Displaying all 14 publications

  1. Hossain N, Mahlia TMI, Saidur R
    Biotechnol Biofuels, 2019;12:125.
    PMID: 31139255 DOI: 10.1186/s13068-019-1465-0
    Background: Microalgae have been experimented as a potential feedstock for biofuel generation in current era owing to its' rich energy content, inflated growth rate, inexpensive culture approaches, the notable capacity of CO2 fixation, and O2 addition to the environment. Currently, research is ongoing towards the advancement of microalgal-biofuel technologies. The nano-additive application has been appeared as a prominent innovation to meet this phenomenon.

    Main text: The main objective of this study was to delineate the synergistic impact of microalgal biofuel integrated with nano-additive applications. Numerous nano-additives such as nano-fibres, nano-particles, nano-tubes, nano-sheets, nano-droplets, and other nano-structures' applications have been reviewed in this study to facilitate microalgae growth to biofuel utilization. The present paper was intended to comprehensively review the nano-particles preparing techniques for microalgae cultivation and harvesting, biofuel extraction, and application of microalgae-biofuel nano-particles blends. Prospects of solid nano-additives and nano-fluid applications in the future on microalgae production, microalgae biomass conversion to biofuels as well as enhancement of biofuel combustion for revolutionary advancement in biofuel technology have been demonstrated elaborately by this review. This study also highlighted the potential biofuels from microalgae, numerous technologies, and conversion processes. Along with that, the study recounted suitability of potential microalgae candidates with an integrated design generating value-added co-products besides biofuel production.

    Conclusions: Nano-additive applications at different stages from microalgae culture to end-product utilization presented strong possibility in mercantile approach as well as positive impact on the environment along with valuable co-products generation into the near future.

  2. Su G, Ong HC, Mofijur M, Mahlia TMI, Ok YS
    J Hazard Mater, 2022 Feb 15;424(Pt B):127396.
    PMID: 34673394 DOI: 10.1016/j.jhazmat.2021.127396
    The application of waste oils as pyrolysis feedstocks to produce high-grade biofuels is receiving extensive attention, which will diversify energy supplies and address environmental challenges caused by waste oils treatment and fossil fuel combustion. Waste oils are the optimal raw materials to produce biofuels due to their high hydrogen and volatile matter content. However, traditional disposal methods such as gasification, transesterification, hydrotreating, solvent extraction, and membrane technology are difficult to achieve satisfactory effects owing to shortcomings like enormous energy demand, long process time, high operational cost, and hazardous material pollution. The usage of clean and safe pyrolysis technology can break through the current predicament. The bio-oil produced by the conventional pyrolysis of waste oils has a high yield and HHV with great potential to replace fossil fuel, but contains a high acid value of about 120 mg KOH/g. Nevertheless, the application of CaO and NaOH can significantly decrease the acid value of bio-oil to close to zero. Additionally, the addition of coexisting bifunctional catalyst, SBA-15@MgO@Zn in particular, can simultaneously reduce the acid value and positively influence the yield and quality of bio-oil. Moreover, co-pyrolysis with plastic waste can effectively save energy and time, and improve bio-oil yield and quality. Consequently, this paper presents a critical and comprehensive review of the production of biofuels using conventional and advanced pyrolysis of waste oils.
  3. Logeswaran J, Shamsuddin AH, Silitonga AS, Mahlia TMI
    Environ Sci Pollut Res Int, 2020 Jul;27(21):25956-25969.
    PMID: 32378100 DOI: 10.1007/s11356-020-09102-7
    With the ever-increasing energy demands, fossil fuels are gradually depleting and eventually, these nonrenewable sources of energy will be exhausted. Hence, there is an urgent need to formulate alternative fuels that are both renewable and sustainable. Biomass is one of the reliable sources of energy because it is replenishable. Rice is the staple food in many countries, particularly in Asia. The number of paddy fields has increased tremendously over the years and is expected to increase in the future in response to the growing world population. This will lead to significant amounts of agricultural wastes annually, particularly rice straw. In some countries, open burning and soil incorporation are used to manage agricultural wastes. Open burning is the preferred method because it is inexpensive. However, this method is highly undesirable because of its detrimental impact on the environment resulting from the release of carbon dioxide and methane gas. Hence, it is important to develop an energy-harvesting method from rice straw for power generation. More studies need to be carried out on the availability and characteristics of rice straw as well as logistic analysis to assess the potential of rice straw for power generation. This paper is focused on reviewing studies pertaining to the characteristics and potential of rice straw for power generation, current rice straw management practices, and logistic analysis in order to develop a suitable energy-harvesting method from rice straw in Malaysia.
  4. Hossain N, Nizamuddin S, Griffin G, Selvakannan P, Mubarak NM, Mahlia TMI
    Sci Rep, 2020 Nov 02;10(1):18851.
    PMID: 33139793 DOI: 10.1038/s41598-020-75936-3
    The recent implication of circular economy in Australia spurred the demand for waste material utilization for value-added product generations on a commercial scale. Therefore, this experimental study emphasized on agricultural waste biomass, rice husk (RH) as potential feedstock to produce valuable products. Rice husk biochar (RB) was obtained at temperature: 180 °C, pressure: 70 bar, reaction time: 20 min with water via hydrothermal carbonization (HTC), and the obtained biochar yield was 57.9%. Enhancement of zeta potential value from - 30.1 to - 10.6 mV in RB presented the higher suspension stability, and improvement of surface area and porosity in RB demonstrated the wastewater adsorption capacity. Along with that, an increase of crystallinity in RB, 60.5%, also indicates the enhancement of the catalytic performance of the material significantly more favorable to improve the adsorption efficiency of transitional compounds. In contrast, an increase of the atomic O/C ratio in RB, 0.51 delineated high breakdown of the cellulosic component, which is favorable for biofuel purpose. 13.98% SiO2 reduction in RB confirmed ash content minimization and better quality of fuel properties. Therefore, the rice husk biochar through HTC can be considered a suitable material for further application to treat wastewater and generate bioenergy.
  5. Silakhori M, Naghavi MS, Metselaar HSC, Mahlia TMI, Fauzi H, Mehrali M
    Materials (Basel), 2013 Apr 29;6(5):1608-1620.
    PMID: 28809232 DOI: 10.3390/ma6051608
    Microencapsulated paraffin wax/polyaniline was prepared using a simple in situ polymerization technique, and its performance characteristics were investigated. Weight losses of samples were determined by Thermal Gravimetry Analysis (TGA). The microencapsulated samples with 23% and 49% paraffin showed less decomposition after 330 °C than with higher percentage of paraffin. These samples were then subjected to a thermal cycling test. Thermal properties of microencapsulated paraffin wax were evaluated by Differential Scanning Calorimeter (DSC). Structure stability and compatibility of core and coating materials were also tested by Fourier transform infrared spectrophotometer (FTIR), and the surface morphology of the samples are shown by Field Emission Scanning Electron Microscopy (FESEM). It has been found that the microencapsulated paraffin waxes show little change in the latent heat of fusion and melting temperature after one thousand thermal recycles. Besides, the chemical characteristics and structural profile remained constant after one thousand thermal cycling tests. Therefore, microencapsulated paraffin wax/polyaniline is a stable material that can be used for thermal energy storage systems.
  6. Damanik N, Ong HC, Tong CW, Mahlia TMI, Silitonga AS
    Environ Sci Pollut Res Int, 2018 Jun;25(16):15307-15325.
    PMID: 29721797 DOI: 10.1007/s11356-018-2098-8
    Biodiesels have gained much popularity because they are cleaner alternative fuels and they can be used directly in diesel engines without modifications. In this paper, a brief review of the key studies pertaining to the engine performance and exhaust emission characteristics of diesel engines fueled with biodiesel blends, exhaust aftertreatment systems, and low-temperature combustion technology is presented. In general, most biodiesel blends result in a significant decrease in carbon monoxide and total unburned hydrocarbon emissions. There is also a decrease in carbon monoxide, nitrogen oxide, and total unburned hydrocarbon emissions while the engine performance increases for diesel engines fueled with biodiesels blended with nano-additives. The development of automotive technologies, such as exhaust gas recirculation systems and low-temperature combustion technology, also improves the thermal efficiency of diesel engines and reduces nitrogen oxide and particulate matter emissions.
  7. Mahlia TMI, Ismail N, Hossain N, Silitonga AS, Shamsuddin AH
    Environ Sci Pollut Res Int, 2019 May;26(15):14849-14866.
    PMID: 30937750 DOI: 10.1007/s11356-019-04563-x
    Due to global warming and increasing price of fossil fuel, scientists all over the world have been trying to find reliable alternative fuels. One of the most potential candidates is renewable energy from biomass. The race for renewable energy from biomass has long begun and focused on to combat the deteriorating condition of the environment. Palm oil has been in the spotlight as an alternative of bioenergy sources to resolve fossil fuel problem due to its environment-friendly nature. This review will look deep into the origins of palm oil and how it is processed, bioproducts from this biomass, and oil palm biomass-based power plant in Malaysia. Palm oil is usually processed from oil palm fruits and other parts of the oil palm plant are candidates for raw material of bioproduct generation. Oil palm biomass can be turned into three subcategories: bioproduct, biofuels, and biopower. Focusing on biofuel, the biodiesel from palm oil will be explored in detail and its implication in Malaysia as one of the biggest producers of oil palm in the world will also be emphasized comprehensively. The paper presents the detail of a schematic flow diagram of a palm oil mill process of transforming oil palm into crude palm oil and it wastes. This paper will also discuss the current oil palm biomass power plants in Malaysia. Palm oil has been proven itself as a potential alternative to reduce negative environmental impact of global warming.
  8. Rahmawati R, Bilad MR, Laziz AM, Nordin NAHM, Jusoh N, Putra ZA, et al.
    J Environ Manage, 2019 Nov 01;249:109359.
    PMID: 31404857 DOI: 10.1016/j.jenvman.2019.109359
    Membrane based technologies are highly reliable for water and wastewater treatment, including for removal of total oil and grease from produced water. However, performances of the pressure driven processes are highly restricted by membrane fouling and the application of traditional air bubbling system is limited by their low shear stress due to poor contacts with the membrane surface. This study develops and assesses a novel finned spacer, placed in between vertical panel, for membrane fouling control in submerged plate-and-frame module system for real produced water filtration. Results show that permeability of the panel is enhanced by 87% from 201 to 381 L/(m2 h bar). The spacer system can be operated in switching mode to accommodate two-sided panel aeration. This leads to panel permeability increment by 22% higher than the conventional vertical system. The mechanisms of finned spacer in encouraging the flow trajectory was proven by visual observation and flow simulation. The fins alter the air bubbles flow trajectory toward the membrane surface to effectively scour-off the foulant. Overall results demonstrate the efficacy of the developed spacer in projecting the air bubble trajectory toward the membrane surface and thus significantly enhances membrane panel productivity.
  9. Hannan MA, Lipu MSH, Hussain A, Ker PJ, Mahlia TMI, Mansor M, et al.
    Sci Rep, 2020 Mar 13;10(1):4687.
    PMID: 32170100 DOI: 10.1038/s41598-020-61464-7
    State of charge (SOC) is a crucial index used in the assessment of electric vehicle (EV) battery storage systems. Thus, SOC estimation of lithium-ion batteries has been widely investigated because of their fast charging, long-life cycle, and high energy density characteristics. However, precise SOC assessment of lithium-ion batteries remains challenging because of their varying characteristics under different working environments. Machine learning techniques have been widely used to design an advanced SOC estimation method without the information of battery chemical reactions, battery models, internal properties, and additional filters. Here, the capacity of optimized machine learning techniques are presented toward enhanced SOC estimation in terms of learning capability, accuracy, generalization performance, and convergence speed. We validate the proposed method through lithium-ion battery experiments, EV drive cycles, temperature, noise, and aging effects. We show that the proposed method outperforms several state-of-the-art approaches in terms of accuracy, adaptability, and robustness under diverse operating conditions.
  10. Khounani Z, Abdul Razak NN, Hosseinzadeh-Bandbafha H, Madadi M, Sun F, Mohammadi P, et al.
    Environ Res, 2024 Jan 26;248:118286.
    PMID: 38280524 DOI: 10.1016/j.envres.2024.118286
    This study assesses the environmental impact of pine chip-based biorefinery processes, focusing on bioethanol, xylonic acid, and lignin production. A cradle-to-gate Life Cycle Assessment (LCA) is employed, comparing a novel biphasic pretreatment method (p-toluenesulfonic acid (TsOH)/pentanol, Sc-1) with conventional sulfuric acid pretreatment (H2SO4, Sc-2). The analysis spans biomass handling, pretreatment, enzymatic hydrolysis, yeast fermentation, and distillation. Sc-1 yielded an environmental impact of 1.45E+01 kPt, predominantly affecting human health (96.55%), followed by ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed 32.61%, 29.28%, and 38.11% to the total environmental burdens, respectively. Sc-2 resulted in an environmental burden of 1.64E+01 kPt, with a primary impact on human health (96.56%) and smaller roles for ecosystems (3.07%) and resources (0.38%). Bioethanol, xylonic acid, and lignin contributed differently at 22.59%, 12.5%, and 64.91%, respectively. Electricity generation was predominant in both scenarios, accounting for 99.05% of the environmental impact, primarily driven by its extensive usage in biomass handling and pretreatment processes. Sc-1 demonstrated a 13.05% lower environmental impact than Sc-2 due to decreased electricity consumption and increased bioethanol and xylonic acid outputs. This study highlights the pivotal role of pretreatment methods in wood-based biorefineries and underscores the urgency of sustainable alternatives like TsOH/pentanol. Additionally, adopting greener electricity generation, advanced technologies, and process optimization are crucial for reducing the environmental footprint of waste-based biorefineries while preserving valuable bioproduct production.
  11. Mofijur M, Ahmed SF, Rahman SMA, Arafat Siddiki SY, Islam ABMS, Shahabuddin M, et al.
    Environ Res, 2021 04;195:110857.
    PMID: 33581088 DOI: 10.1016/j.envres.2021.110857
    The nature of micro- and nanoplastics and their harmful consequences has drawn significant attention in recent years in the context of environmental protection. Therefore, this paper aims to provide an overview of the existing literature related to this evolving subject, focusing on the documented human health and marine environment impacts of micro- and nanoplastics and including a discussion of the economic challenges and strategies to mitigate this waste problem. The study highlights the micro- and nanoplastics distribution across various trophic levels of the food web, and in different organs in infected animals which is possible due to their reduced size and their lightweight, multi-coloured and abundant features. Consequently, micro- and nanoplastics pose significant risks to marine organisms and human health in the form of cytotoxicity, acute reactions, and undesirable immune responses. They affect several sectors including aquaculture, agriculture, fisheries, transportation, industrial sectors, power generation, tourism, and local authorities causing considerable economic losses. This can be minimised by identifying key sources of environmental plastic contamination and educating the public, thus reducing the transfer of micro- and nanoplastics into the environment. Furthermore, the exploitation of the potential of microorganisms, particularly those from marine origins that can degrade plastics, could offer an enhanced and environmentally sound approach to mitigate micro- and nanoplastics pollution.
  12. Ahmed SF, Mofijur M, Nuzhat S, Chowdhury AT, Rafa N, Uddin MA, et al.
    J Hazard Mater, 2021 08 15;416:125912.
    PMID: 34492846 DOI: 10.1016/j.jhazmat.2021.125912
    Emerging contaminants (ECs) in wastewater have recently attracted the attention of researchers as they pose significant risks to human health and wildlife. This paper presents the state-of-art technologies used to remove ECs from wastewater through a comprehensive review. It also highlights the challenges faced by existing EC removal technologies in wastewater treatment plants and provides future research directions. Many treatment technologies like biological, chemical, and physical approaches have been advanced for removing various ECs. However, currently, no individual technology can effectively remove ECs, whereas hybrid systems have often been found to be more efficient. A hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides. Despite the lack of extensive research, nanotechnology may be a promising approach as nanomaterial incorporated technologies have shown potential in removing different contaminants from wastewater. Nevertheless, most existing technologies are highly energy and resource-intensive as well as costly to maintain and operate. Besides, most proposed advanced treatment technologies are yet to be evaluated for large-scale practicality. Complemented with techno-economic feasibility studies of the treatment techniques, comprehensive research and development are therefore necessary to achieve a full and effective removal of ECs by wastewater treatment plants.
  13. Shahapurkar K, Chenrayan V, Soudagar MEM, Badruddin IA, Shahapurkar P, Elfasakhany A, et al.
    Polymers (Basel), 2021 Aug 27;13(17).
    PMID: 34502935 DOI: 10.3390/polym13172894
    The effect of crump rubber on the dry sliding wear behavior of epoxy composites is investigated in the present study. Wear tests are carried out for three levels of crump rubber (10, 20, and 30 vol.%), normal applied load (30, 40, and 50 N), and sliding distance (1, 3, and 5 km). The wear behavior of crump rubber-epoxy composites is investigated against EN31 steel discs. The hybrid mathematical approach of Taguchi-coupled Grey Relational Analysis (GRA)-Principal Component Analysis (PCA) is used to examine the influence of crump rubber on the tribological response of composites. Mathematical and experimental results reveal that increasing crump rubber content reduces the wear rate of composites. Composites also show a significant decrease in specific wear values at higher applied loads. Furthermore, the coefficient of friction also shows a decreasing trend with an increase in crump rubber content, indicating the effectiveness of reinforcing crump rubber in a widely used epoxy matrix. Analysis of Variance (ANOVA) results also reveal that the crump rubber content in the composite is a significant parameter to influence the wear characteristic. The post-test temperature of discs increases with an increase in the applied load, while decreasing with an increase in filler loading. Worn surfaces are analyzed using scanning electron microscopy to understand structure-property correlations. Finally, existing studies available in the literature are compared with the wear data of the present study in the form of a property map.
  14. Hannan MA, How DNT, Lipu MSH, Mansor M, Ker PJ, Dong ZY, et al.
    Sci Rep, 2021 Oct 01;11(1):19541.
    PMID: 34599233 DOI: 10.1038/s41598-021-98915-8
    Accurate state of charge (SOC) estimation of lithium-ion (Li-ion) batteries is crucial in prolonging cell lifespan and ensuring its safe operation for electric vehicle applications. In this article, we propose the deep learning-based transformer model trained with self-supervised learning (SSL) for end-to-end SOC estimation without the requirements of feature engineering or adaptive filtering. We demonstrate that with the SSL framework, the proposed deep learning transformer model achieves the lowest root-mean-square-error (RMSE) of 0.90% and a mean-absolute-error (MAE) of 0.44% at constant ambient temperature, and RMSE of 1.19% and a MAE of 0.7% at varying ambient temperature. With SSL, the proposed model can be trained with as few as 5 epochs using only 20% of the total training data and still achieves less than 1.9% RMSE on the test data. Finally, we also demonstrate that the learning weights during the SSL training can be transferred to a new Li-ion cell with different chemistry and still achieve on-par performance compared to the models trained from scratch on the new cell.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links