Displaying all 14 publications

Abstract:
Sort:
  1. Kyaw Oo M, Mandal UK, Chatterjee B
    Pharm Dev Technol, 2017 Feb;22(1):2-12.
    PMID: 26616399 DOI: 10.3109/10837450.2015.1116568
    High melting point polymeric carrier without plasticizer is unacceptable for solid dispersion (SD) by melting method. Combined polymer-plasticizer carrier significantly affects drug solubility and tableting property of SD.
  2. Mahmood S, Taher M, Mandal UK
    Int J Nanomedicine, 2014;9:4331-46.
    PMID: 25246789 DOI: 10.2147/IJN.S65408
    Raloxifene hydrochloride, a highly effective drug for the treatment of invasive breast cancer and osteoporosis in post-menopausal women, shows poor oral bioavailability of 2%. The aim of this study was to develop, statistically optimize, and characterize raloxifene hydrochloride-loaded transfersomes for transdermal delivery, in order to overcome the poor bioavailability issue with the drug. A response surface methodology experimental design was applied for the optimization of transfersomes, using Box-Behnken experimental design. Phospholipon(®) 90G, sodium deoxycholate, and sonication time, each at three levels, were selected as independent variables, while entrapment efficiency, vesicle size, and transdermal flux were identified as dependent variables. The formulation was characterized by surface morphology and shape, particle size, and zeta potential. Ex vivo transdermal flux was determined using a Hanson diffusion cell assembly, with rat skin as a barrier medium. Transfersomes from the optimized formulation were found to have spherical, unilamellar structures, with a homogeneous distribution and low polydispersity index (0.08). They had a particle size of 134±9 nM, with an entrapment efficiency of 91.00%±4.90%, and transdermal flux of 6.5±1.1 μg/cm(2)/hour. Raloxifene hydrochloride-loaded transfersomes proved significantly superior in terms of amount of drug permeated and deposited in the skin, with enhancement ratios of 6.25±1.50 and 9.25±2.40, respectively, when compared with drug-loaded conventional liposomes, and an ethanolic phosphate buffer saline. Differential scanning calorimetry study revealed a greater change in skin structure, compared with a control sample, during the ex vivo drug diffusion study. Further, confocal laser scanning microscopy proved an enhanced permeation of coumarin-6-loaded transfersomes, to a depth of approximately160 μM, as compared with rigid liposomes. These ex vivo findings proved that a raloxifene hydrochloride-loaded transfersome formulation could be a superior alternative to oral delivery of the drug.
  3. Mahmood S, Mandal UK, Chatterjee B
    Int J Pharm, 2018 May 05;542(1-2):36-46.
    PMID: 29501737 DOI: 10.1016/j.ijpharm.2018.02.044
    Raloxifene HCl belongs to a class of selective estrogen receptor modulators (SERMs) which is used for the management of breast cancer. The major problem reported with raloxifene is its poor bioavailability which is only up to 2%. The main objective of the present work was to formulate raloxifene loaded ethosomal preparation for transdermal application and compare it with an oral formulation of the drug. Five ethosomal formulations with different concentrations of ethanol and a conventional liposomes formulation were prepared by rotary evaporation method. The prepared systems were characterised by high resolution transmission electron microscopy (HRTEM), force emission electron microscopy (FESEM), atomic force microscopy (AFM), X-ray diffraction (XRD) and 31P NMR study. All these advanced characterization study established that the ethosome formulation was well defined by its size, shape and its bilayer formation. Transdermal flux of the optimized ethosome formulation was 22.14 ± 0.83 µg/ml/cm2 which was 21 times higher when compared to the conventional liposomes. Confocal microscopy study revealed an enhanced permeation of coumarin-6 dye loaded ethosomes to much deeper layers of skin when compared with conventional liposomes. The gel was found to be pseudoplastic with elastic behaviour. In-vivo studies on rats showed a higher bioavailability of RXL (157% times) for ethosomal formulation when compared with the oral formulation. In conclusion, RXL loaded ethosomal formulation via transdermal route showed superior drug delivery properties as compared to oral formulation.
  4. Sengupta P, Chatterjee B, Mandal UK, Gorain B, Pal TK
    J Pharm Anal, 2017 Dec;7(6):381-387.
    PMID: 29404063 DOI: 10.1016/j.jpha.2017.05.004
    Management of cardiovascular risk factors in diabetes demands special attention due to their co-existence. Pioglitazone (PIO) and telmisartan (TLM) combination can be beneficial in effective control of cardiovascular complication in diabetes. In this research, we developed and validated a high throughput LC-MS/MS method for simultaneous quantitation of PIO and TLM in rat plasma. This developed method is more sensitive and can quantitate the analytes in relatively shorter period of time compared to the previously reported methods for their individual quantification. Moreover, till date, there is no bioanalytical method available to simultaneously quantitate PIO and TLM in a single run. The method was validated according to the USFDA guidelines for bioanalytical method validation. A linear response of the analytes was observed over the range of 0.005-10 µg/mL with satisfactory precision and accuracy. Accuracy at four quality control levels was within 94.27%-106.10%. The intra- and inter-day precision ranged from 2.32%-10.14 and 5.02%-8.12%, respectively. The method was reproducible and sensitive enough to quantitate PIO and TLM in rat plasma samples of a preclinical pharmacokinetic study. Due to the potential of PIO-TLM combination to be therapeutically explored, this method is expected to have significant usefulness in future.
  5. Senjoti FG, Mahmood S, Jaffri JM, Mandal UK
    Iran J Pharm Res, 2016;15(1):53-70.
    PMID: 27610147
    An oral sustained-release floating tablet formulation of metformin HCl was designed and developed. Effervescence and swelling properties were attributed on the developed tablets by sodium bicarbonate and HPMC-PEO polymer combination, respectively. Tablet composition was optimized by response surface methodology (RSM). Seventeen (17) trial formulations were analyzed according to Box-Behnken design of experiment where polymer content of HPMC and PEO at 1: 4 ratio (A), amount of sodium bi-carbonate (B), and amount of SSG (C) were adopted as independent variables. Floating lag time in sec (Y1), cumulative percent drug released at 1 h (Y2) and 12 h (Y3) were chosen as response variables. Tablets from the optimized formulation were also stored at accelerated stability condition (40°C and 75% RH) for 3 months to assess their stability profile. RSM could efficiently optimize the tablet composition with excellent prediction ability. In-vitro drug release until 12 h, floating lag time, and duration of floating were dependent on the amount of three selected independent variables. Optimized tablets remained floating for more than 24 h with a floating lag time of less than 4 min. Based on best fitting method, optimized formulation was found to follow Korsmeyer-Peppas release kinetic. Accelerated stability study revealed that optimized formulation was stable for three months without any major changes in assay, dissolution profile, floating lag time and other physical properties.
  6. Bin LK, Helaluddin ABM, Islam Sarker MZ, Mandal UK, Gaurav A
    Pak J Pharm Sci, 2020 Mar;33(2):551-559.
    PMID: 32276897
    Orally disintegrating tablet (ODT) is a friendly dosage form that requires no access to water and serves as a solution to non-compliance. There are many co-processed adjuvants available in the market. However, there is no single product possesses all the ideal characteristics such as good compressibility, fast disintegration and good palatability for ODT application. The aim of this research was to produce a xylitol-starch base co-processed adjuvant which is suitable for ODT application. Two processing methods namely wet granulation and freeze drying were used to compare the characteristics of co-processed adjuvant comprising of xylitol, starch and crospovidone XL-10 mixed at various ratios. The co-processed excipients were compressed into ODT and physically characterized for powder flow, particle size, hardness, thickness, weight, friability, in-vitro disintegration time and in-situ disintegration time, lubricant sensitivity, dilution potential, Fourier transform infrared spectroscopy, scanning electronic microscopy and x-ray diffraction analysis. Formulation F6 was selected as the optimum formulation due to the fastest in-vitro (135.33±11.52 s) and in-situ disintegration time (88.67±13.56s) among all the formulations (p<0.05). Increase in starch component decreases disintegration time of ODT. The powder flow fell under the category of fair flow. Generally, it was observed that freeze drying method produced smaller particle size granules compared to wet granulation method. ODT produced from freeze drying method had shorter disintegration time compared to ODT from wet granulation batch. In conclusion, a novel co-processed excipient comprised of xylitol, starch and crospovidone XL-10, produced using freeze drying method with fast disintegration time, good compressibility and palatability was developed and characterized. The co-processed excipient is suitable for ODT application.
  7. Sengupta P, Das A, Ibrahim F, Mandal UK, Chatterjee B, Mahmood S, et al.
    Regul Toxicol Pharmacol, 2016 Aug 26;81:155-161.
    PMID: 27569202 DOI: 10.1016/j.yrtph.2016.08.009
    It has been reported that the major cause of mortality in diabetes is cardiovascular diseases and contribution of hypertension is significant in this context. Pioglitazone, a thiazolidinedione class of therapeutic agent is used to treat type 2 diabetes mellitus. Telmisartan, an angiotensin receptor blocker antihypertensive has been reported to have beneficial effect if co-administered with pioglitazone for the management of diabetes complications. The present research work aims to evaluate the safety/toxicity profile of this combination in rat model. The investigation was carried out after co-administering the drugs to the rats for 28 days at three dose levels of 50, 100 and 150 mg/kg covering low to high dose ranges. Various hematological and biochemical parameters were studied in addition to the histopathology of the major organs in order to evaluate the toxicity profile of the combination. Absence of mortality and histopathological changes as well as unaltered hematological and biochemical parameters was observed. This preliminary investigation concludes that the combination of pioglitazone and telmisartan can primarily be stated as safe in animals, even at the dose level which is several folds higher than the intended human dose. Thus, this combination can be explored in future to develop a rational therapy regimen to treat hypertensive diabetic patients.
  8. Chatterjee B, Gorain B, Mohananaidu K, Sengupta P, Mandal UK, Choudhury H
    Int J Pharm, 2019 Jun 30;565:258-268.
    PMID: 31095983 DOI: 10.1016/j.ijpharm.2019.05.032
    Intranasal delivery has shown to circumvent blood-brain-barrier (BBB) and deliver the drugs into the CNS at a higher rate and extent than other conventional routes. The mechanism of drug transport from nose-to-brain is not fully understood yet, but several neuronal pathways are considered to be involved. Intranasal nanoemulsion for brain targeting is investigated extensively. Higher brain distribution of drug after administering intranasal nanoemulsion was established by many researchers. Issues with nasomucosal clearance are solved by formulating modified nanoemulsion; for instance, mucoadhesive nanoemulsion or in situ nanoemulgel. However, no intranasal nanoemulsion for brain targeted drug delivery has been able to cross the way from 'benches to bed-side' of patients. Possibilities of toxicity by repeated administration, irregular nasal absorption during the diseased condition, use of a high amount of surfactants are few of the persisting challenges that need to overcome in coming days. Understanding the ways how current developments has solved some challenges is necessary. At the same time, the future direction of the research on intranasal nanoemulsion should be figured out based on existing challenges. This review is focused on the current developments of intranasal nanoemulsion with special emphasis on the existing challenges that would help to set future research direction.
  9. Chatterjee B, Hamed Almurisi S, Ahmed Mahdi Dukhan A, Mandal UK, Sengupta P
    Drug Deliv, 2016 Aug 15.
    PMID: 27685505
    Self-emulsifying drug delivery system (SEDDS) is an isotropic mixture of lipid, surfactant and co-surfactant, which forms a fine emulsion when comes in contact of an aqueous medium with mild agitation. SEDDS is considered as a potential platform for oral delivery of hydrophobic drug in order to overcome their poor and irregular bioavailability challenges. In spite of fewer advantages like improved solubility of drug, bypassing lymphatic transport etc., SEDDS faces different controversial issues such as the use of appropriate terminology (self-microemulsifying drug delivery system; SMEDDS or self-nanoemulsifying drug delivery system; SNEDDS), presence of high amount of surfactant, correlation of in vitro model to in vivo studies, lack of human volunteer study and effect of conversion of SEDDS to final administrable dosage form on pharmacokinetic behavior of the drug. In this review, potential issues or questions on SEDDS are identified and summarized from the pharmacokinetic point of view. Primarily this review includes the conflict between the influences of droplet size, variation in correlation between in vitro lipolysis or ex-vivo intestinal permeation and pharmacokinetic parameters, variation in in vivo results of solid and liquid SEDDS, and potential challenges or limitation of pharmacokinetic studies on human volunteers with orally administered SEDDS. In the past decades, hundreds of in vivo studies on SEDDS have been published. In the present study, only the relevant article on in vivo pharmacokinetic studies with orally administered SEDDS published in past 5-6 years are analyzed for an up to date compilation.
  10. Ahmed AS, Mandal UK, Taher M, Susanti D, Jaffri JM
    Pharm Dev Technol, 2018 Oct;23(8):751-760.
    PMID: 28378604 DOI: 10.1080/10837450.2017.1295067
    The development of hydrogel films as wound healing dressings is of a great interest owing to their biological tissue-like nature. Polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogels loaded with asiaticoside, a standardized rich fraction of Centella asiatica, were successfully developed using the freeze-thaw method. Response surface methodology with Box-Behnken experimental design was employed to optimize the hydrogels. The hydrogels were characterized and optimized by gel fraction, swelling behavior, water vapor transmission rate and mechanical strength. The formulation with 8% PVA, 5% PEG 400 and five consecutive freeze-thaw cycles was selected as the optimized formulation and was further characterized by its drug release, rheological study, morphology, cytotoxicity and microbial studies. The optimized formulation showed more than 90% drug release at 12 hours. The rheological properties exhibited that the formulation has viscoelastic behavior and remains stable upon storage. Cell culture studies confirmed the biocompatible nature of the optimized hydrogel formulation. In the microbial limit tests, the optimized hydrogel showed no microbial growth. The developed optimized PVA/PEG hydrogel using freeze-thaw method was swellable, elastic, safe, and it can be considered as a promising new wound dressing formulation.
  11. Alagdar GSA, Oo MK, Sengupta P, Mandal UK, Jaffri JM, Chatterjee B
    Int J Pharm Investig, 2017 12 1;7(3):142-148.
    PMID: 29184827 DOI: 10.4103/jphi.JPHI_54_17
    Background and Objective: One of the established strategies to improve solubility and dissolution rate of poorly water-soluble drugs is solid dispersion (SD). Polyethylene glycol (PEG) is used as common carrier despite its stability problem which may be overcome by the addition of hydrophobic polymer. The present research aimed to develop an SD formulation with ibuprofen, a poor water-soluble BCS Class II drug as active pharmaceutical ingredient (API) and PEG 4000-ethyl cellulose (EC) as binary carrier.

    Methods: Melt mixing SD method was employed using a ratio of API: binary carrier (1:3.5 w/w) (SDPE). Another SD was prepared using only PEG (SDP) as a carrier for comparative study. The developed formulation was evaluated using optical microscopy, scanning electron microscopy (SEM), determination of moisture content, differential scanning calorimetry (DSC), in vitro dissolution test, attenuated total reflection-Fourier transform infrared spectroscopy (ATR-FTIR) and flow properties.

    Results: SEM and DSC indicated the conversion of crystalline ibuprofen to fine partly amorphous solid dispersion, which was responsible for the increase in dissolution rate of SD than a physical mixture. The release characteristics within 1 h from the higher to the lower value were the SDPE> SDP> physical mixture. Flow property evaluation using the angle of repose showed no difference between SD and PM. However, by Carr index and Hausner ratio, the flow properties of SDPE was excellent.

    Conclusion: The SD formulation with the PEG 4000-EC carrier can be effective to enhance in vitro dissolution of ibuprofen immediate release dosage form.

  12. Choudhury H, Gorain B, Chatterjee B, Mandal UK, Sengupta P, Tekade RK
    Curr Pharm Des, 2017;23(17):2504-2531.
    PMID: 27908273 DOI: 10.2174/1381612822666161201143600
    BACKGROUND: Most of the active pharmaceutical ingredients discovered recently in pharmaceutical field exhibits poor aqueous solubility that pose major problem in their oral administration. The oral administration of these drugs gets further complicated due to their short bioavailability, inconsistent absorption and inter/intra subject variability.

    METHODS: Pharmaceutical emulsion holds a significant place as a primary choice of oral drug delivery system for lipophilic drugs used in pediatric and geriatric patients. Pharmacokinetic studies on nanoemulsion mediated drugs delivery approach indicates practical feasibility in regards to their clinical translation and commercialization.

    RESULTS: This review article is to provide an updated understanding on pharmacokinetic and pharmacodynamic features of nanoemulsion delivered via oral, intravenous, topical and nasal route.

    CONCLUSION: The article is of huge interest to formulation scientists working on range of lipophilic drug molecules intended to be administered through oral, intravenous, topical and nasal routes for vivid medical benefits.

  13. Abdul Manaf SA, Hegde G, Mandal UK, Wui TW, Roy P
    Curr Drug Deliv, 2017;14(8):1071-1077.
    PMID: 27745545 DOI: 10.2174/1567201813666161017130612
    BACKGROUND: Nano-scale carbon systems are emerging alternatives in drug delivery and bioimaging applications of which they gradually replace the quantum dots characterized by toxic heavy metal content in the latter application.

    OBJECTIVE: The work intended to use carbon nanospheres synthesized from biowaste Sago bark for cancer cell imaging applications.

    METHODS: This study synthesised carbon nanospheres from biowaste Sago bark using a catalyst-free pyrolysis technique. The nanospheres were functionalized with fluorescent dye coumarin-6 for cell imaging. Fluorescent nanosytems were characterized by field emission scanning electron microscopy-energy dispersive X ray, photon correlation spectroscopy and fourier transform infrared spectroscopy techniques.

    RESULTS: The average size of carbon nanospheres ranged between 30 and 40 nm with zeta potential of -26.8 ± 1.87 mV. The percentage viability of cancer cells on exposure to nanospheres varied from 91- 89 % for N2a cells and 90-85 % for A-375 cells respectively. Speedy uptake of the fluorescent nanospheres in both N2a and A-375 cells was observed within two hours of exposure.

    CONCLUSION: Novel fluorescent carbon nanosystem design following waste-to-wealth approach exhibited promising potential in cancer cell imaging applications.

  14. Sh Ahmed A, Taher M, Mandal UK, Jaffri JM, Susanti D, Mahmood S, et al.
    BMC Complement Altern Med, 2019 Aug 14;19(1):213.
    PMID: 31412845 DOI: 10.1186/s12906-019-2625-2
    BACKGROUND: Various extracts of Centella asiatica (Apiaceae) and its active constituent, asiaticoside, have been reported to possess wound healing property when assessed using various in vivo and in vitro models. In an attempt to develop a formulation with accelerated wound healing effect, the present study was performed to examine in vivo efficacy of asiaticoside-rich hydrogel formulation in rabbits.

    METHODS: Asiaticoside-rich fraction was prepared from C. asiatica aerial part and then incorporated into polyvinyl alcohol/polyethylene glycol (PVA/PEG) hydrogel. The hydrogel was subjected to wound healing investigation using the in vivo incision model.

    RESULTS: The results obtained demonstrated that: i) the hydrogel formulation did not cause any signs of irritation on the rabbits' skin and; ii) enhanced wound healing 15% faster than the commercial cream and > 40% faster than the untreated wounds. The skin healing process was seen in all wounds marked by formation of a thick epithelial layer, keratin, and moderate formation of granulation tissues, fibroblasts and collagen with no fibrinoid necrosis detected.

    CONCLUSION: The asiaticoside-rich hydrogel developed using the freeze-thaw method was effective in accelerating wound healing in rabbits.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links