Displaying all 14 publications

Abstract:
Sort:
  1. Salim YS, Sharon A, Vigneswari S, Mohamad Ibrahim MN, Amirul AA
    Appl Biochem Biotechnol, 2012 May;167(2):314-26.
    PMID: 22544728 DOI: 10.1007/s12010-012-9688-6
    This paper investigates the degradation of polyhydroxyalkanoates and its biofiber composites in both soil and lake environment. Time-dependent changes in the weight loss of films were monitored. The rate of degradation of poly(3-hydroxybutyrate) [P(3HB)], poly(3-hydroxybutyrate-co-4-hydroxybutyrate) [P(3HB-co-23 mol% 4HB)] and poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-9 mol% 3HV-co-19 mol% 4HB)] were investigated. The rate of degradation in the lake is higher compared to that in the soil. The highest rate of degradation in lake environment (15.6% w/w week(-1)) was observed with P(3HB-co-3HV-co-4HB) terpolymer. Additionally, the rate of degradation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-38 mol% 3HV)] was compared to PHBV biofiber composites containing compatibilizers and empty fruit bunch (EFB). Here, composites with 30% EFB displayed the highest rate of degradation both in the lake (25.6% w/w week(-1)) and soil (15.6% w/w week(-1)) environment.
  2. Ahmad Bhawani S, Fong SS, Mohamad Ibrahim MN
    Int J Anal Chem, 2015;2015:170239.
    PMID: 26604926 DOI: 10.1155/2015/170239
    The nature of caffeine reveals that it is a bitter white crystalline alkaloid. It is a common ingredient in a variety of drinks (soft and energy drinks) and is also used in combination with various medicines. In order to maintain the optimum level of caffeine, various spectrophotometric methods have been developed. The monitoring of caffeine is very important aspect because of its consumption in higher doses that can lead to various physiological disorders. This paper incorporates various spectrophotometric methods used in the analysis of caffeine in various environmental samples such as pharmaceuticals, soft and energy drinks, tea, and coffee. A range of spectrophotometric methodologies including chemometric techniques and derivatization of spectra have been used to analyse the caffeine.
  3. Danish M, Birnbach J, Mohamad Ibrahim MN, Hashim R
    Data Brief, 2020 Feb;28:105045.
    PMID: 31921950 DOI: 10.1016/j.dib.2019.105045
    The optimization data presented here are part of the study planned to remove the caffeine from aqueous solution through the large surface area optimized H3PO4-activated Acacia mangium wood activated carbon (OAMW-AC). The maximum adsorption capacity of the OAMW-AC for caffeine adsorption was achieved (30.3 mg/g) through optimized independent variables such as, OAMW-AC dosage (3.0 g/L), initial caffeine concentration (100 mg/L), contact time (60 min), and solution pH (7.7). The adsorption capacity of OAMW-AC was optimized with the help of rotatable central composite design of response surface methodology. Under the stated optimized conditions for maximum adsorption capacity, the removal efficiency was calculated to be 93%. The statistical significance of the data set was tested through the analysis of variance (ANOVA) study. Data confirmed the statistical model for caffeine adsorption was significant. The regression coefficient (R2) of curve fitting through the quadratic model was found to be 0.9832, and the adjusted regression coefficient was observed to be 0.9675.
  4. Safian MT, Sekeri SH, Yaqoob AA, Serrà A, Jamudin MD, Mohamad Ibrahim MN
    Talanta, 2022 Mar 01;239:123109.
    PMID: 34864531 DOI: 10.1016/j.talanta.2021.123109
    With each passing year, the agriculture and wood processing industries generate increasingly high tonnages of biomass waste, which instead of being burned or left to accumulate should be utilized more sustainably. In parallel, advances in green technology have encouraged large companies and nations to begin using eco-friendly materials, including eco-friendly emulsifiers, which are used in various industries and in bio-based materials. The emulsion-conducive properties of lignocellulosic materials such as cellulose, hemicellulose, and lignin, the building blocks of plant and wood structures, have demonstrated a particular ability to alter the landscape of emulsion technology. Beyond that, the further modification of their structure may improve emulsion stability, which often determines the performance of emulsions. Considering those trends, this review examines the performance of lignocellulosic materials after modification according to their stability, droplet size, and distribution by size, all of which suggest their outstanding potential as materials for emulsifying agents.
  5. Jamjoum HAA, Umar K, Adnan R, Razali MR, Mohamad Ibrahim MN
    Front Chem, 2021;9:752276.
    PMID: 34621725 DOI: 10.3389/fchem.2021.752276
    Sustainable water processing techniques have been extensively investigated and are capable of improving water quality. Among the techniques, photocatalytic technology has shown great potential in recent years as a low cost, environmentally friendly and sustainable technology. However, the major challenge in the industrial development of photocatalyst technology is to develop an ideal photocatalyst which must have high photocatalytic activity, a large specific surface area, harvest sunlight and shows recyclability. Keeping these views, the present review highlighted the synthesis approaches of graphene/metal oxide nanocomposite, characterization techniques and their prominent applications in photocatalysis. Various parameters such as photocatalyst loading, structure of photocatalyst, temperature, pH, effect of oxidizing species and wavelength of light were addressed which could affect the rate of degradation. Moreover, the formation of intermediates during photo-oxidation of organic pollutants using these photocatalysts is also discussed. The analysis concluded with a synopsis of the importance of graphene-based materials in pollutant removal. Finally, a brief overview of the problems and future approaches in the field is also presented.
  6. Bhawani SA, Albishri HM, Khan ZA, Mohamad Ibrahim MN, Mohammad A
    J Anal Methods Chem, 2013;2013:973280.
    PMID: 24455427 DOI: 10.1155/2013/973280
    This review incorporates a large number of chromatographic systems modified by the surfactants. A large number of solvent systems and stationary phases are summarized in this paper. Three different kinds of surfactants (anionic, cationic, and nonionic) are used as modifiers for stationary phases as well as solvent systems. Surfactants are used at all the three different concentration levels (below, above, and at critical micelle concentration) where surfactants behave differently. Modifications of both stationary phases and solvent systems by surfactants produced a new generation of chromatographic systems. Microemulsion solvent systems are also incorporated in this paper. Microemulsion thin-layer chromatography is a new approach in the field of chromatography.
  7. Umar MF, Rafatullah M, Abbas SZ, Mohamad Ibrahim MN, Ismail N
    PMID: 33917378 DOI: 10.3390/ijerph18073811
    Anthropogenic activities are largely responsible for the vast amounts of pollutants such as polycyclic aromatic hydrocarbons, cyanides, phenols, metal derivatives, sulphides, and other chemicals in wastewater. The excess benzene, toluene and xylene (BTX) can cause severe toxicity to living organisms in wastewater. A novel approach to mitigate this problem is the benthic microbial fuel cell (BMFC) setup to produce renewable energy and bio-remediate wastewater aromatic hydrocarbons. Several mechanisms of electrogens have been utilized for the bioremediation of BTX through BMFCs. In the future, BMFCs may be significant for chemical and petrochemical industry wastewater treatment. The distinct factors are considered to evaluate the performance of BMFCs, such as pollutant removal efficiency, power density, and current density, which are discussed by using operating parameters such as, pH, temperature and internal resistance. To further upgrade the BMFC technology, this review summarizes prototype electrode materials, the bioremediation of BTX, and their applications.
  8. Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, et al.
    Materials (Basel), 2020 Nov 05;13(21).
    PMID: 33167607 DOI: 10.3390/ma13214993
    Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
  9. Pang WQ, Lai CS, Mad' Atari MF, Pandian BR, Mohamad Ibrahim MN, Tan ST, et al.
    Plant Physiol Biochem, 2023 Nov;204:108104.
    PMID: 37862933 DOI: 10.1016/j.plaphy.2023.108104
    Graphene oxide (GO) is a novel nanomaterial with distinct physical properties and significant biological applications. The use of GO in plant tissue culture offers several new properties and potential applications. This research is vital due to the growing need for innovative techniques to promote plant growth, improve plant productivity and mitigate challenges posed by environmental stressors. This study focused on the rare Cameron Highlands white strawberry plants (Fragaria x ananassa) and addressed issues such as callus production during direct shoot induction and hyperhydricity. The research aimed to investigate the effects of GO on the regeneration process and genetic stability of white strawberry plants and to use molecular markers to ensure that plants propagated in vitro are true to type. For this purpose, shoot tip explants were used and different concentrations of GO (0, 2.5, 5.0, 7.5, 10 mg/L) were added to the Murashige and Skoog (MS) medium for six weeks. The results showed that the optimum concentration for promoting the development of white strawberry seedlings was 7.5 mg/L of GO. The study also revealed that the addition of 7.5 mg/L GO in combination with 8 μM TDZ to the MS medium facilitated the induction of multiple shoots. Moreover, the clonal fidelity of the in vitro plants treated with GO showed a genetic similarity of over 97%. These results confirm that lower GO concentrations improve plant development and stability. Consequently, this nanomaterial has a positive effect on the growth of strawberry plants and is therefore well suited for strawberry tissue culture.
  10. Idris MO, Mohamad Ibrahim MN, Md Noh NA, Yaqoob AA, Hussin MH, Mohamad Shukri IA, et al.
    Chemosphere, 2023 Nov;340:139985.
    PMID: 37640217 DOI: 10.1016/j.chemosphere.2023.139985
    Naphthalene is a very common and hazardous environmental pollutant, and its biodegradation has received serious attention. As demonstrated in this study, naphthalene-contaminated wastewater can be biodegraded using a microbial fuel cell (MFC). Furthermore, the potential of MFC for electricity generation appears to be a promising technology to meet energy demands other than those produced from fossil fuels. Nowadays, efforts are being made to improve the overall performance of MFC by integrating biowaste materials for anode fabrication. In this study, palm kernel shell waste was used to produce palm kernel shell-derived graphene oxide (PKS-GO) and palm kernel shell-derived reduced graphene oxide (PKS-rGO), which were then fabricated into anode electrodes to improve the system's electron mobilization and transport. The MFC configuration with the PKS-rGO anode demonstrated greater energy production potential, with a maximum power density of 35.11 mW/m2 and a current density of 101.76 mA/m2, compared to the PKS-GO anode, which achieved a maximum power density of 17.85 mW/m2 and a current density of 72.56 mA/m2. Furthermore, there is simultaneous naphthalene biodegradation with energy production, where the biodegradation efficiency of naphthalene with PKS-rGO and PKS-GO is 85.5%, and 79.7%, respectively. In addition, the specific capacitance determined from the cyclic voltammetry curve revealed a value for PKS-rGO of 2.23 × 10-4 F/g, which is also higher than the value for PKS-GO (1.57 × 10-4 F/g) on the last day of operation. Anodic microbial analysis shows that electrogens thrive in the MFC process. Finally, a comparison with previous literature and the future prospects of the study are also presented.
  11. Yaqoob AA, Ahmad H, Parveen T, Ahmad A, Oves M, Ismail IMI, et al.
    Front Chem, 2020;8:341.
    PMID: 32509720 DOI: 10.3389/fchem.2020.00341
    Nanoparticles (nanoparticles) have received much attention in biological application because of their unique physicochemical properties. The metal- and metal oxide-supported nanomaterials have shown significant therapeutic effect in medical science. The mechanisms related to the interaction of nanoparticles with animal and plant cells can be used to establish its significant role and to improve their activity in health and medical applications. Various attempts have been made to discuss the antibiotic resistance and antimicrobial activity of metal-supported nanoparticles. Despite all these developments, there is still a need to investigate their performance to overcome modern challenges. In this regard, the present review examines the role of various types of metal-supported nanomaterials in different areas such as antibacterial, antifungal, anticancer, and so on. Based on the significant ongoing research and applications, it is expected that metal-supported nanomaterials play an outstanding role not only in medical but also in other important areas.
  12. Aziz ZAA, Mohd-Nasir H, Ahmad A, Mohd Setapar SH, Peng WL, Chuo SC, et al.
    Front Chem, 2019;7:739.
    PMID: 31799232 DOI: 10.3389/fchem.2019.00739
    Nanotechnology is an innovative area of science that includes the design, characterization, production, and application of materials, devices and systems by controlling shape and size at the nanometer scale (1-100 nm). Nanotechnology incorporation in cosmetic formulation is considered as the hottest and emerging technology available. Cosmetic manufacturers use nanoscale size ingredients to provide better UV protection, deeper skin penetration, long-lasting effects, increased color, finish quality, and many more. Micellar nanoparticles is one of the latest field applied in cosmetic products that becoming trending and widely commercialized in local and international markets. The ability of nanoemulsion system to form small micellar nanoparticles size with high surface area allowing to effectiveness of bioactive component transport onto the skin. Oil in water nanoemulsion is playing a major role as effective formulation in cosmetics such as make-up remover, facial cleanser, anti-aging lotion, sun-screens, and other water-based cosmetic formulations. The objective of this review is to critically discuss the properties, advantageous, and mechanism of micellar nanoparticles formation in nanoemulsion system. Therefore, present article introduce and discuss the specific benefits of nanoemulsion system in forming micellar nanoparticles for cosmetic formulation which become major factors for further development of micellar-based cosmetic segments.
  13. Al-Mazaideh GM, Al-Mustafa AH, Alnasser SMA, Nassir-Allah I, Tarawneh KA, Al-Rimawi F, et al.
    Heliyon, 2022 Nov;8(11):e11516.
    PMID: 36468128 DOI: 10.1016/j.heliyon.2022.e11516
    BACKGROUND: Crataegus aronia (C. aronia) extracts have been used medicinally since ancient times and are often utilized in traditional Arab medicine. An extensive study has revealed that Crataegus species have antioxidant, antibacterial, anti-inflammatory, and hypotensive properties.

    OBJECTIVES: This work was performed to explore the phytochemical contents of C. aronia extract, as well as its antioxidant and antibacterial properties, and to assess the lipid peroxidation level as an oxidative stress biomarker in erythrocytes.

    METHODS: Chemical constituents in the methanolic extract of C. aronia were identified by gas chromatography-mass spectrometry and their relative concentrations were determined. The antioxidant activity of C. aronia extract was determined using the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) assays. The effect of C. aronia on the concentration of malondialdehyde (MDA) in the erythrocyte hemolysates was studied. Also, the crude extract was assessed for its antimicrobial activity through agar diffusion and microbroth dilution assays.

    KEY FINDINGS: The DPPH IC50 value of the extract showed that the antioxidants activity was equal to (14.3 μg/mL) and according to FRAP assay, the antioxidant activity was in the range of 33.9 μmol-82.86 μmol Fe+2/g dw. The extract exerts a protective effect against oxidative stress in RBCs and shows a 50% inhibition of malonyldialdehyde (MDA) at 39.48 μg/mL extract. Minimum inhibitory concentrations were found in the range of 800-1000 μg/mL of leave extracts. The phytochemical analysis showed that the total phenols, flavonoids, and flavonols content were 494.071 mg GAE/g extract, 155.251 mg RE/g extract, and 103.2049 mg RE/g extract). C. aronia extract contains alkaloids, flavonoids, terpenoids, and steroids. Crude extract of C. aronia was more potent in inhibiting the growth of B. subtilis, S. aureus and M. luteus with MIC and MBC values of 800,800 and 1000 μg/mL, respectively. According to GC-MS, 20 compounds were identified: dihydro-3-methylene-5-methyl-2-furanone (14.71%), hexanoic acid (6.57%), ethyl 3,5-ditert-butyl-4-hydroxybenzoate (6.4%), N, N-dimethylheptadecan-1-amine (4.91%), methyl 2-oxobutanoate (4.14%), glyceraldehyde (3.98%), and 2-methoxy-1-(2-nitroethenyl)-3-phenylmethoxybenzene (3.16%), were the major constituents.

    CONCLUSION: This study may open a window of hope for children with Glucose-6-phosphate dehydrogenase disorder by possible utilization of the active ingredients of C. aronia to minimize both oxidative stress and infection which negatively impact the disease sequelae.According to these in vitro experiments, this plant extract has a significant amount of natural antioxidants, which may aid in the protection of various oxidative stresses. As a result, employing the active components of C. aronia to minimize oxidative stress and infection, both of which have a detrimental impact on disease sequelae, may bring hope to children with Glucose-6-phosphate dehydrogenase disorder.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links