Displaying publications 1 - 20 of 37 in total

Abstract:
Sort:
  1. Zulfikar MA, Mohammad AW
    Med J Malaysia, 2004 May;59 Suppl B:141-2.
    PMID: 15468858
    Hybrid organic-inorganic membranes were fabricated using sol-gel technique using PMMA and TEOS with 80/20 (w/w) ratio at various solvents. The thin membrane films were then characterized using DSC and TGA. From DSC analysis, the Tg value of the PMMA moieties in hybrids membranes was in the order H-15-Toluene < Pure PMMA < H-15-THF < H-15-DMF. Furthermore, from TGA analysis it was found that the hybrid membranes have higher thermal stability compared to pure PMMA, and the type of solvents used play an important role in their degradation behavior.
  2. Ng LY, Mohammad AW, Ng CY
    Adv Colloid Interface Sci, 2013 Sep;197-198:85-107.
    PMID: 23706348 DOI: 10.1016/j.cis.2013.04.004
    The performance of nanofiltration (NF) processes is mainly governed by factors such as the sieving effect (also known as size exclusion) and the Donnan effect (which depends on membrane surface charges). This has encouraged the development of new types of NF membranes using various kinds of polyelectrolytes as they have good pore-sealing effects and are able to improve the membrane surface charge density. Manipulation of the pH, supporting electrolyte concentration, type and concentration of polyelectrolyte solutions can significantly vary the characteristics of polyelectrolyte molecules thus improving their electrostatic interactions with the surrounding compounds. This is highly desired and useful when polyelectrolytes are to be incorporated in membrane surface modification as the charges formed can increase the membrane surface charge density, membrane surface coating stability and membrane selectivity. Most of the research discussed in this paper employed the special features of polyelectrolyte molecules to improve the performance of NF membranes in various applications. Various methods have been used to incorporate polyelectrolytes in order to improve NF membrane performance, such as static deposition, dynamic deposition, single layer coating, layer-by-layer (LbL) coating, and so forth. Some of the suitable devices or instruments used for polyelectrolyte-modified membranes are recommended and evaluated. In conclusion, polyelectrolyte-modified membranes offer significant improvements, can be produced in a short period of time, require less energy during membrane modification or fabrication and incur lower production costs. Thus, a full understanding of the factors affecting polyelectrolyte-modified membranes is very much desired and worth further detailed investigation in the near future.
  3. Rasit AH, Mohammad AW, Pan KL
    Med J Malaysia, 2006 Feb;61 Suppl A:79-82.
    PMID: 17042236
    Trend towards changing the face of management for pediatric femoral fractures tends to advocate operative treatment. This study was undertaken to review our current practice in the wake of recent progress in the management of pediatric femoral fractures. Fifty patients with femoral diaphyseal fracture treated in Sarawak General Hospital were reviewed retrospectively after an average follow-up of 2.6 years. There were 36 boys and 14 girls, with a mean age of 6.2 years (range five months to 14 years). Children under six years of age constituted the majority of the patients. Half of the fractures were caused by road traffic accident. Nine patients had associated injuries. The most common site of fracture was at the middle third (N=31). The treatment regimens were delayed hip spica (DHS) in 16, immediate hip spica (IHS) in 24, plate osteosynthesis (PO) in five, titanium elastic nailing (TEN) in five, and external fixation (EF) in one. The minimum hospital stay was two days, and the maximum 33 days (mean, 9.7 days). Malunion was the commonest complication. Conservative treatment is the preferred option for children under six years of age. It is cost-effective with minimal complication. The other treatment options are reserved for specific indication in older children. Diaphyseal fractures of the femur in children can be adequately managed non-operatively.
  4. Teow YH, Nordin NI, Mohammad AW
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33747-33757.
    PMID: 29754300 DOI: 10.1007/s11356-018-2189-6
    Textile wastewater contains methylene blue (MB), a major coloring agent in textile industry. Activated carbon (AC) is the most widely used adsorbent in removing dyes from industrial wastewater. However, high production cost of AC is the major obstacle for its wide application in dye wastewater treatment. In this study, a sustainable approach in synthesizing graphenic adsorbent from palm oil mill effluent (POME), a potential carbonaceous source, has been explored. This new development in adsorption technique is considered as green synthesis as it does not require any binder during the synthesis process, and at the same time, it helps to solve the bottleneck of palm oil industry as POME is the main cause contributed to Malaysia's water pollution problem. The synthesized GSC was characterized through XRD, FESEM, and EDX. The adsorption performance of the synthesized GSC was evaluated by adsorption of MB. The effect of initial concentration of synthetic MB solution (1-20 mg/L) and weight of GSC (5-20 g) were investigated. A remarkable change in color of synthetic MB solution from blue to crystal clear was observed at the end of adsorption study. High efficiency of the synthesized GSC for dye-contaminated wastewater treatment is concluded.
  5. Ong CB, Mohammad AW, Ng LY
    Environ Sci Pollut Res Int, 2019 Nov;26(33):33856-33869.
    PMID: 29943245 DOI: 10.1007/s11356-018-2557-2
    In this work, synergistic effect of solar photocatalysis integrated with adsorption process towards the degradation of Congo red (CR) was investigated via two different approaches using a photocatalytic membrane reactor. In the first approach, sequential treatments were conducted through the adsorption by graphene oxide (GO) and then followed by photocatalytic oxidation using Fe-doped ZnO nanocomposites (NCs). In the second approach, however, CR solution was treated by photocatalytic oxidation using Fe-doped ZnO/rGO NCs. These nanocomposites were synthesized by a sol-gel method. The NCs were characterized by X-ray diffraction (XRD), photoluminescence (PL), Fourier transmission infrared (FTIR), ultraviolet-visible (UV-vis) spectroscopy, and field emission scanning electron microscopy (FESEM). It was observed that Fe-doped ZnO could enhance the photoactivity of ZnO under solar light. When Fe-doped ZnO were decorated on GO sheets, however, this provided a surface enhancement for adsorption of organic pollutants. The photocatalytic performances using both approaches were evaluated based on the degradation of CR molecules in aqueous solution under solar irradiation. Nanofiltration (NF) performance in terms of CR residual removal from water and their fouling behavior during post-separation of photocatalysts was studied. Serious flux declined and thicker fouling layer on membrane were found in photocatalytic membrane reactor using Fe-doped ZnO/rGO NCs which could be attributed to the stronger π-π interaction between rGO and CR solution.
  6. Wu TY, Mohammad AW, Jahim JM, Anuar N
    J Environ Manage, 2010 Jul;91(7):1467-90.
    PMID: 20231054 DOI: 10.1016/j.jenvman.2010.02.008
    Palm oil production is one of the major industries in Malaysia and this country ranks one of the largest productions in the world. In Malaysia, the total production of crude palm oil in 2008 was 17,734,441 tonnes. However, the production of this amount of crude palm oil results in even larger amounts of palm oil mill effluent (POME). In the year 2008 alone, at least 44 million tonnes of POME was generated in Malaysia. Currently, the ponding system is the most common treatment method for POME but other processes such as aerobic and anaerobic digestion, physicochemical treatment and membrane filtration may also provide the palm oil industries with possible insights into the improvement of POME treatment processes. Generally, open ponding offers low capital and operating costs but this conventional method is becoming less attractive because the methane produced is wasted to the atmosphere and the system can not be certified for Carbon Emission Reduction trading. On the other hand, anaerobic digestion of POME provides the fastest payback of investment because the treatment enables biogas recovery for heat generation and treated effluent for land application. Lastly, it is proposed herewith that wastewater management based on the promotion of cleaner production and environmentally sound biotechnologies should be prioritized and included as a part of the POME management in Malaysia for attaining sustainable development. This paper thus discusses and compares state-of-the-art POME treatment methods as well as their individual performances.
  7. Wu TY, Mohammad AW, Jahim JM, Anuar N
    Biotechnol Adv, 2009 Jan-Feb;27(1):40-52.
    PMID: 18804158 DOI: 10.1016/j.biotechadv.2008.08.005
    During the last century, a great deal of research and development as well as applications has been devoted to waste. These include waste minimization and treatment, the environmental assessment of waste, minimization of environmental impact, life cycle assessment and others. The major reason for such huge efforts is that waste generation constitutes one of the major environmental problems where production industries are concerned. Until now, an increasing pressure has been put on finding methods of reusing waste, for instance through cleaner production, thus mirroring rapid changes in environmental policies. The palm oil industry is one of the leading industries in Malaysia with a yearly production of more than 13 million tons of crude palm oil and plantations covering 11% of the Malaysian land area. However, the production of such amounts of crude palm oil result in even larger amounts of palm oil mill effluent (POME), estimated at nearly three times the quantity of crude palm oil. Normally, POME is treated using end-of-pipe processes, but it is worth considering the potential value of POME prior to its treatment through introduction of a cleaner production. It is envisaged that POME can be sustainably reused as a fermentation substrate in the production of various metabolites, fertilizers and animal feeds through biotechnological advances. The present paper thus discusses various technically feasible and economically beneficial means of transforming the POME into low or preferably high value added products.
  8. Ho KC, Teoh YX, Teow YH, Mohammad AW
    J Environ Manage, 2021 Jan 01;277:111434.
    PMID: 33045646 DOI: 10.1016/j.jenvman.2020.111434
    This study assessed the environmental impacts of the formulation of graphene oxide (GO)/multi-walled carbon nanotubes (MWCNTs) conductive membranes and of the process operating parameters of electrically-enhanced palm oil mill effluent (POME) filtration. Two different analyses approaches were employed, cradle-to-gate approach for conductive membrane production and gate-to-gate approach for the POME filtration process. The parameters in conductive-membrane formulation (e.g. the weight ratio of carbon nanomaterials, and concentration of GO/MWCNT nanohybrids) and process operating parameters (e.g. electric field strength and electricity operating mode) were investigated. The findings herein are twofold. Firstly, for the fabrication of GO/MWCNT conductive membranes, the best weight ratio of GO:MWCNTs was found to be 1:9, given its superior membrane electrical conductivity with lower environmental impacts by 8.51% compared to pristine MWCNTs. The most suitable concentration of carbon nanomaterials was found to be 5 wt%, given its lowest impacts on resource depletion, human health, and ecosystems. Secondly, for the electrically-enhanced POME filtration, the optimum process operating parameters were found to be the application of an electric field of 300 V/cm in the continuous mode, given its lower environmental impacts (22.99%-89.30%) secondary to its requirement of the least electricity to produce permeate. The present study has established not only the optimized conditions in membrane formulation but also the operating parameters of electrically-enhanced filtration; such findings enable the use of cleaner production and sustainable approach to minimize fouling for industrial applications, whilst maintaining excellent efficiency.
  9. Ang WL, Mohammad AW, Johnson D, Hilal N
    Sci Total Environ, 2020 Mar 01;706:136047.
    PMID: 31864996 DOI: 10.1016/j.scitotenv.2019.136047
    Study of forward osmosis (FO) has been increasing steadily over recent years with applications mainly focusing on desalination and wastewater treatment processes. The working mechanism of FO lies in the natural movement of water between two streams with different osmotic pressure, which makes it useful in concentrating or diluting solutions. FO has rarely been operated as a stand-alone process. Instead, FO processes often appear in a hybrid or integrated form where FO is combined with other treatment technologies to achieve better overall process performance and cost savings. This article aims to provide a comprehensive review on the need for hybridization/integration for FO membrane processes, with emphasis given to process enhancement, draw solution regeneration, and pretreatment for FO fouling mitigation. In general, integrated/hybrid FO processes can reduce the membrane fouling propensity; prepare the solution suitable for subsequent value-added uses and production of renewable energy; lower the costs associated with energy consumption; enhance the quality of treated water; and enable the continuous operation of FO through the regeneration of draw solution. The future potential of FO lies in the success of how it can be hybridized or integrated with other technologies to minimize its own shortcomings, while enhancing the overall performance.
  10. Nizam NUM, Hanafiah MM, Mahmoudi E, Mohammad AW
    Sci Rep, 2023 Aug 07;13(1):12777.
    PMID: 37550339 DOI: 10.1038/s41598-023-40069-w
    The potentials of biomass-based carbon quantum dot (CQD) as an adsorbent for batch adsorption of dyes and its photocatalytic degradation capacity for dyes which are congo red (CR) and methylene blue (MB) have been conducted in this study. The CQDs properties, performance, behaviour, and photoluminescence characteristics were assessed using batch adsorption experiments which were carried out under operating conditions including, temperature, pH and dosage. The morphological analysis revealed that CQDs are highly porous, uniform, closely aligned and multi-layered. The presence of hydroxyl, carboxyl and carbonyl functional groups indicated the significance of the oxygenated functional groups. Spectral analysis of photoluminescence for CQDs confirmed their photoluminescent quality by exhibiting high excitation intensity and possessing greenish-blue fluorescence under UV radiation. The removal percentage of the dyes adsorbed for both CR and MB dyes was 77% and 75%. Langmuir isotherm and pseudo-second-order models closely fitted the adsorption results. Thermodynamics analysis indicated that the adsorption process was exothermic and spontaneous, with excellent reusability and stability. The degradation efficiency of CQDs on both dyes was more than 90% under sunlight irradiation and obeyed the first-order kinetic model. These results demonstrated CQDs to be an excellent adsorbent and outstanding photocatalyst for organic dye degradation.
  11. Harruddin N, Saufi SM, Faizal CKM, Mohammad AW
    RSC Adv, 2018 Jul 16;8(45):25396-25408.
    PMID: 35539815 DOI: 10.1039/c8ra03392g
    In this study, the removal of acetic acid by supported liquid membrane (SLM) using hybrid polyethersulfone (PES)-graphene membrane prepared by vapor induced phase separation (VIPS) was investigated. The effects of graphene loading, coagulation bath temperature, air exposure time, and air humidity on the morphology, mechanical strength, porosity, and contact angle of the membrane were analyzed. The performance and stability of the hybrid membrane as a SLM support for acetic acid removal were studied. The best PES-graphene membrane support was produced at a coagulation bath temperature of 50 °C, an air exposure time of 30 s and air humidity of 80%. The fabricated membrane has a symmetrical micropore cellular structure, high porosity and high contact angle. Under specific SLM conditions, almost 95% of acetic acid was successfully removed from 10 g L-1 aqueous acetic acid solution. The hybrid membrane remains stable for more than 116 h without suffering any membrane breakage during the continuous SLM process.
  12. Leo CP, Chai WK, Mohammad AW, Qi Y, Hoedley AF, Chai SP
    Water Sci Technol, 2011;64(1):199-205.
    PMID: 22053475
    A high concentration of phosphorus in wastewater may lead to excessive algae growth and deoxygenation of the water. In this work, nanofiltration (NF) of phosphorus-rich solutions is studied in order to investigate its potential in removing and recycling phosphorus. Wastewater samples from a pulp and paper plant were first analyzed. Commercial membranes (DK5, MPF34, NF90, NF270, NF200) were characterized and tested in permeability and phosphorus removal experiments. NF90 membranes offer the highest rejection of phosphorus; a rejection of more than 70% phosphorus was achieved for a feed containing 2.5 g/L of phosphorus at a pH <2. Additionally, NF90, NF200 and NF270 membranes show higher permeability than DK5 and MPF34 membranes. The separation performance of NF90 is slightly affected by phosphorus concentration and pressure, which may be due to concentration polarization and fouling. By adjusting the pH to 2 or adding sulfuric acid, the separation performance of NF90 was improved in removing phosphorus. However, the presence of acetic acid significantly impairs the rejection of phosphorus.
  13. Leo CP, Yahya MZ, Kamal SN, Ahmad AL, Mohammad AW
    Water Sci Technol, 2013;67(4):831-7.
    PMID: 23306262 DOI: 10.2166/wst.2012.625
    Aquaculture activities in developing countries have raised deep concern about nutrient pollution, especially excess phosphorus in wastewater, which leads to eutrophication. NF, NF90, NF450 and XLE membranes were studied to forecast the potential of nanofiltration and low pressure reverse osmosis in the removal of phosphorus from aquaculture wastewater. Cross-sectional morphology, water contact angle, water permeability and zeta potential of these membranes were first examined. Membrane with higher porosity and greater hydrophilicity showed better permeability. Membrane samples also commonly exhibited high zeta potential value in the polyphosphate-rich solution. All the selected membranes removed more than 90% of polyphosphate from the concentrated feed (75 mg/L) at 12 bar. The separation performance of XLE membrane was well maintained at 94.6% even at low pressure. At low feed concentration, more than 70.0% of phosphorus rejection was achieved using XLE membrane. The formation of intermolecular bonds between polyphosphate and the acquired membranes probably had improved the removal of polyphosphate at high feed concentration. XLE membrane was further tested and its rejection of polyphosphate reduced with the decline of pH and the addition of ammonium nitrate.
  14. Luthfi AAI, Manaf SFA, Illias RM, Harun S, Mohammad AW, Jahim JM
    Appl Microbiol Biotechnol, 2017 Apr;101(8):3055-3075.
    PMID: 28280869 DOI: 10.1007/s00253-017-8210-z
    Due to the world's dwindling energy supplies, greater thrust has been placed on the utilization of renewable resources for global succinate production. Exploration of such biotechnological route could be seen as an act of counterbalance to the continued fossil fuel dominance. Malaysia being a tropical country stands out among many other nations for its plenty of resources in the form of lignocellulosic biomass. To date, oil palm frond (OPF) contributes to the largest fraction of agricultural residues in Malaysia, while kenaf, a newly introduced fiber crop with relatively high growth rate, holds great potential for developing sustainable succinate production, apart from OPF. Utilization of non-food, inexhaustible, and low-cost derived biomass in the form of OPF and kenaf for bio-based succinate production remains largely untapped. Owing to the richness of carbohydrates in OPF and kenaf, bio-succinate commercialization using these sources appears as an attractive proposition for future sustainable developments. The aim of this paper was to review some research efforts in developing a biorefinery system based on OPF and kenaf as processing inputs. It presents the importance of the current progress in bio-succinate commercialization, in addition to describing the potential use of different succinate production hosts and various pretreatments-saccharifications under development for OPF and kenaf. Evaluations on the feasibility of OPF and kenaf as fermentation substrates are also discussed.
  15. Mahmoudi E, Azizkhani S, Mohammad AW, Ng LY, Benamor A, Ang WL, et al.
    J Environ Sci (China), 2020 Dec;98:151-160.
    PMID: 33097147 DOI: 10.1016/j.jes.2020.05.013
    Graphene oxide is a very high capacity adsorbent due to its functional groups and π-π interactions with other compounds. Adsorption capacity of graphene oxide, however, can be further enhanced by having synergistic effects through the use of mixed-matrix composite. In this study, silica-decorated graphene oxide (SGO) was used as a high-efficiency adsorbent to remove Congo red (CR) and Cadmium (II) from aqueous solutions. The effects of solution initial concentration (20 to 120 mg/l), solution pH (pH 2 to 7), adsorption duration (0 to 140 min) and temperature (298 to 323 K) were measured in order to optimize the adsorption conditions using the SGO adsorbent. Morphological analysis indicated that the silica nanoparticles could be dispersed uniformly on the graphene oxide surfaces. The maximum capacities of adsorbent for effective removal of Cd (II) and CR were 43.45 and 333.33 mg/g based on Freundlich and Langmuir isotherms, respectively. Langmuir and Freundlich isotherms displayed the highest values of Qmax for CR and Cd (II) adsorption in this study, which indicated monolayer adsorption of CR and multilayer adsorption of Cd (II) onto the SGO, respectively. Thermodynamic study showed that the enthalpy (ΔH) and Gibbs free energy(ΔG) values of the adsorption process for both pollutants were negative, suggesting that the process was spontaneous and exothermic in nature. This study showed active sites of SGO (π-π, hydroxyl, carboxyl, ketone, silane-based functional groups) contributed to an enormous enhancement in simultaneous removal of CR and Cd (II) from an aqueous solution, Therefore, SGO can be considered as a promising adsorbent for future water pollution control and removal of hazardous materials from aqueous solutions.
  16. Nizam NUM, Hanafiah MM, Mahmoudi E, Halim AA, Mohammad AW
    Sci Rep, 2021 Apr 21;11(1):8623.
    PMID: 33883637 DOI: 10.1038/s41598-021-88084-z
    In this study, two biomass-based adsorbents were used as new precursors for optimizing synthesis conditions of a cost-effective powdered activated carbon (PAC). The PAC removed dyes from an aqueous solution using carbonization and activation by KOH, NaOH, and H2SO4. The optimum synthesis, activation temperature, time and impregnation ratio, removal rate, and uptake capacity were determined. The optimum PAC was analyzed and characterized using Fourier-transform infrared spectroscopy (FTIR), x-ray diffraction (XRD), a field emission scanning electron microscope (FESEM), Zeta potential, and Raman spectroscopy. Morphological studies showed single-layered planes with highly porous surfaces, especially PAC activated by NaOH and H2SO4. The results showed that the experimental data were well-fitted with a pseudo-second-order model. Based on Langmuir isotherm, the maximum adsorption capacity for removing methylene blue (MB) was 769.23 mg g-1 and 458.43 mg g-1 for congo red (CR). Based on the isotherm models, more than one mechanism was involved in the adsorption process, monolayer for the anionic dye and multilayer for the cationic dye. Elovich and intraparticle diffusion kinetic models showed that rubber seed shells (RSS) has higher α values with a greater tendency to adsorb dyes compared to rubber seed (RS). A thermodynamic study showed that both dyes' adsorption process was spontaneous and exothermic due to the negative values of the enthalpy (ΔH) and Gibbs free energy (ΔG). The change in removal efficiency of adsorbent for regeneration study was observed in the seventh cycles, with a 3% decline in the CR and 2% decline in MB removal performance. This study showed that the presence of functional groups and active sites on the produced adsorbent (hydroxyl, alkoxy, carboxyl, and π - π) contributed to its considerable affinity for adsorption in dye removal. Therefore, the optimum PAC can serve as efficient and cost-effective adsorbents to remove dyes from industrial wastewater.
  17. Gan JY, Chong WC, Sim LC, Koo CH, Pang YL, Mahmoudi E, et al.
    Membranes (Basel), 2020 Aug 03;10(8).
    PMID: 32756315 DOI: 10.3390/membranes10080175
    This study produced a novel polysulfone (PSF) membrane for dye removal using lemon-derived carbon quantum dots-grafted silver nanoparticles (Ag/CQDs) as membrane nanofiller. The preparation of CQDs was completed by undergoing hydrothermal treatment to carbonize the pulp-free lemon juice into CQD solution. The CQD solution was then coupled with Ag nanoparticles to form Ag/CQDs nanohybrid. The synthesized powders were characterized in terms of morphologies, functional groups and surface charges. A set of membranes was fabricated with different loadings of Ag/CQDs powder using the nonsolvent-induced phase separation (NIPS) method. The modified membranes were studied in terms of morphology, elemental composition, hydrophilicity and pore size. In addition, pure water flux, rejection test and fouling analysis of the membranes were evaluated using tartrazine dye. From the results, 0.5 wt % of Ag/CQD was identified as the optimum loading to be incorporated with the pristine PSF membrane. The modified membrane exhibited an excellent pure water permeability and dye rejection with improvements of 169% and 92%, respectively. In addition, the composite membrane also experienced lower flux decline, higher reversible fouling and lower irreversible fouling. This study has proven that the addition of CQD additives into membrane greatly improves the polymeric membrane's properties and filtration performance.
  18. Ho KC, Teow YH, Sum JY, Ng ZJ, Mohammad AW
    Sci Total Environ, 2021 Mar 15;760:143966.
    PMID: 33341611 DOI: 10.1016/j.scitotenv.2020.143966
    Rapid urbanization and the rising global population have led to the generation of substantial volumes of laundry wastewater. Accordingly, treatment of laundry wastewater has been advocated to curb water pollution and achieve water sustainability. However, technological limitations in treating (specifically) laundry wastewater and the lack of regulations governing the levels of contaminants for such discharges have been perennial problems. This review bridges the knowledge gap by delineating the feasibility of current technologies in laundry wastewater treatment and the experiences of various countries in adopting different approaches. Besides, the feasible methods for collecting laundry wastewater are elaborated. The development of the treatment technologies is highlighted, in which the integrated-treatment processes (physicochemical, biological, and combination of both) are critically discussed based on their functions and methods. A judicious selection of the technologies not only improves the energy efficiency and quality of the treated wastewater, but also mitigates capitals and operational costs. This is projected to enhance public acceptance towards the reuse of laundry wastewater. Thus, the comprehensive assessment herein is envisioned to insightfully guide national policymakers in exploring the viability of the technologies and water-recycling projects. Future research should focus on the techno-economic aspects of the treatment processes, especially their industrial scale-up.
  19. Azizkhani S, Hussain SA, Abdullah N, Ismail MHS, Mohammad AW
    J Environ Health Sci Eng, 2021 Jun;19(1):491-502.
    PMID: 34150253 DOI: 10.1007/s40201-021-00622-z
    The functionalized graphene oxide by silica and chitosan helped to prepared an adsorbent with high adsorption potential for removing cadmium(II). In this study, the adsorbent was synthesized and the batch system of adsorption method was examined to find the potential of the new adsorbent with the various factors of the concentration, pH, time and temperature. The characterization of adsorbent was analyzed by FT-IR, TEM, Zeta potential and XRD analysis. Regards to the analysis it can be understood that the adsorbent was synthesized successfully. The investigational results were validated and analyzed by applying the 5 models of isotherm and 4 models of kinetic. The Langmuir, Freundlich, Temkin, Harkins-Jura and Dubinin-radushkevich models were used which the Langmuir, Freundlich and Temkin fitted well for removing cadmium(II). The Qmax value was achieved 126.58 mg/g by using the Langmuir model for removing Cd(II) respectively. The pseudo-first-order, pseudo-second-order, Elovich and Intra-particle models were used to validate the kinetic models of the process. The pseudo-second-order and Elovich models were the best fitted kinetic model in this investigation. Thermodynamic parameters of the energy of gibes, the enthalpy, and the entropy were calculated. Generally, the adsorption process was distinguished as an exothermic and spontaneous.
  20. Abdul Wahid R, Ang WL, Mohammad AW, Johnson DJ, Hilal N
    Membranes (Basel), 2021 Jul 28;11(8).
    PMID: 34436329 DOI: 10.3390/membranes11080566
    Fertilizer-drawn forward osmosis (FDFO) is a potential alternative to recover and reuse water and nutrients from agricultural wastewater, such as palm oil mill effluent that consists of 95% water and is rich in nutrients. This study investigated the potential of commercial fertilizers as draw solution (DS) in FDFO to treat anaerobic palm oil mill effluent (An-POME). The process parameters affecting FO were studied and optimized, which were then applied to fertilizer selection based on FO performance and fouling propensity. Six commonly used fertilizers were screened and assessed in terms of pure water flux (Jw) and reverse salt flux (JS). Ammonium sulfate ((NH4)2SO4), mono-ammonium phosphate (MAP), and potassium chloride (KCl) were further evaluated with An-POME. MAP showed the best performance against An-POME, with a high average water flux, low flux decline, the highest performance ratio (PR), and highest water recovery of 5.9% for a 4-h operation. In a 24-h fouling run, the average flux decline and water recovered were 84% and 15%, respectively. Both hydraulic flushing and osmotic backwashing cleaning were able to effectively restore the water flux. The results demonstrated that FDFO using commercial fertilizers has the potential for the treatment of An-POME for water recovery. Nevertheless, further investigation is needed to address challenges such as JS and the dilution factor of DS for direct use of fertigation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links