OBJECTIVE: This study aimed to optimise the formulation of cashew nut butter using response surface methodology (RSM). Four different vegetable oils, namely olive oil, virgin coconut oil, soybean oil and palm oil, were used to select efficient vegetable oil based on its effect on the physicochemical characteristics and sensory evaluation of cashew nut butter.
METHOD: Thirteen formulations of cashew nut butter from RSM were produced to determine the optimum amount of selected oil (olive oil) and honey.
RESULTS: Cashew nut butter stabilised with olive oil showed the best and similar values to commercial peanut butter with the lowest oil separation 3.91% and lower values of texture data of firmness (85.8 g), shear work (87.8 g.sec), stickiness (-27.44 g) and work of adhesion (-36.07 g.sec). The recommended volumes of olive oil and honey for cashew nut butter production were 1.29% and 6.16%, respectively. Consumers favor cashew nut butter, according to sensory analysis' overall acceptance. In terms of nutritional quality, cashew nut butter contains a high amount of fat (47.25%), followed by carbohydrates (24.51%) and protein (16.4%).
CONCLUSION: The type of oil showed significant effects on the stability and spreadability of the produced cashew nut butter.
METHODS: the potential of developing natural disinfectant while using watermelon rinds (WR), pineapple (PP), orange peels (OP), palm kernel cake (PKC), and rice bran (RB), via lacto-fermentation was investigated. The obtained lactic acid bacteria (LAB) metabolites were then employed and the in vitro antifungal activity toward five spoilage fungi of mango was tested through liquid and solid systems. Besides, the effect of the produced disinfectant on the fungal growth inhibition and quality of mango was investigated.
RESULTS: the strains Lactobacillus plantarum ATCC8014 and Lactobacillus fermentum ATCC9338 growing in the substrates PKC and PP exhibited significantly higher in vitro antifungal activity against Colletotrichum gloeosporioides and Botryodiplodia theobromae as compared to other tested LAB strains and substrates. The in-situ results demonstrated that mango samples that were treated with the disinfectant produced from PKC fermented with L. plantarum and L. fermentum had the lowest disease incidence and disease severity index after 16 days shelf life, as well as the lowest conidial concentration. Furthermore, PKC that was fermented by L. fermentum highly maintained the quality of the mango.
CONCLUSIONS: lactic acid fermentation of PKC by L. fermentum demonstrated a high potential for use as a natural disinfectant to control C. gloeosporioides and B. theobromae on mango.