Displaying all 14 publications

Abstract:
Sort:
  1. Vamanshankar H, Nair AB, Rajan N
    Malays J Med Sci, 2011 Jan;18(1):72-5.
    PMID: 22135577
    Foreign bodies are a common problem seen in otolaryngological practice. Of the reported foreign bodies, metallic foreign bodies are a rare entity. One of the least common complications of foreign body ingestion is penetration and migration. We describe a case of a migrating metallic foreign body in a 50-year-old woman with a history of accidental ingestion causing odynophagia. In the present case, the foreign body migrated extraluminally into the carotid sheath. Our review of literature revealed that few such cases have been reported.
  2. Gorain B, Choudhury H, Nair AB, Dubey SK, Kesharwani P
    Drug Discov Today, 2020 07;25(7):1174-1188.
    PMID: 32344042 DOI: 10.1016/j.drudis.2020.04.013
    Theranostics has the potential to revolutionize the diagnosis, treatment, and prognosis of cancer, where novel drug delivery systems could be used to detect the disease at an early stage with instantaneous treatment. Various preclinical approaches of nanoemulsions with entrapped contrast and chemotherapeutic agents have been documented to act specifically on the tumor microenvironment (TME) for both diagnostic and therapeutic purposes. However, bringing these theranostic nanoemulsions through preclinical trials to patients requires several fundamental hurdles to be overcome, including the in vivo behavior of the delivery tool, degradation, and clearance from the system, as well as long-term toxicities. Here, we discuss recent advances in the application of nanoemulsions in molecular imaging with simultaneous therapeutic efficacy in a single delivery system.
  3. Nair AB, Gandhi D, Patel SS, Morsy MA, Gorain B, Attimarad M, et al.
    Molecules, 2020 Oct 26;25(21).
    PMID: 33114598 DOI: 10.3390/molecules25214947
    Sinigrin, a precursor of allyl isothiocyanate, present in the Raphanus sativus exhibits diverse biological activities, and has an immense role against cancer proliferation. Therefore, the objective of this study was to quantify the sinigrin in the R. sativus roots using developed and validated RP-HPLC method and further evaluated its' anticancer activity. To achieve the objective, the roots of R. sativus were lyophilized to obtain a stable powder, which were extracted and passed through an ion-exchange column to obtain sinigrin-rich fraction. The RP-HPLC method using C18 analytical column was used for chromatographic separation and quantification of sinigrin in the prepared fraction, which was attained using the mobile phase consisting of 20 mM tetrabutylammonium: acetonitrile (80:20%, v/v at pH 7.0) at a flow rate of 0.5 mL/min. The chromatographic peak for sinigrin was showed at 3.592 min for pure sinigrin, where a good linearity was achieved within the concentration range of 50 to 800 µg/mL (R2 > 0.99), with an excellent accuracy (-1.37% and -1.29%) and precision (1.43% and 0.94%), for intra and inter-day, respectively. Finally, the MTT assay was performed for the sinigrin-rich fraction using three different human cancer cell lines, viz. prostate cancer (DU-145), colon adenocarcinoma (HCT-15), and melanoma (A-375). The cell-based assays were extended to conduct apoptotic and caspase-3 activities, to determine the mechanism of action of sinigrin in the treatment of cancer. MTT assay showed IC50 values of 15.88, 21.42, and 24.58 µg/mL for DU-145, HCT-15, and A-375 cell lines, respectively. Increased cellular apoptosis and caspase-3 expression were observed with sinigrin-rich fraction, indicating significant increase in overexpression of caspase-3 in DU-145 cells. In conclusion, a simple, sensitive, fast, and accurate RP-HPLC method was developed for the estimation of sinigrin in the prepared fraction. The data observed here indicate that sinigrin can be beneficial in treating prostate cancer possibly by inducing apoptosis.
  4. Chaudhary S, Nair AB, Shah J, Gorain B, Jacob S, Shah H, et al.
    AAPS PharmSciTech, 2021 Apr 09;22(3):127.
    PMID: 33835317 DOI: 10.1208/s12249-021-01995-y
    Being a candidate of BCS class II, dolutegravir (DTG), a recently approved antiretroviral drug, possesses solubility issues. The current research was aimed to improve the solubility of the DTG and thereby enhance its efficacy using the solid dispersion technique. In due course, the miscibility study of the drug was performed with different polymers, where Poloxamer 407 (P407) was found suitable to move forward. The solid dispersion of DTG and P407 was formulated using solvent evaporation technique with a 1:1 proportion of drug and polymer, where the solid-state characterization was performed using differential scanning calorimetry, Fourier transform infrared spectroscopy and X-ray diffraction. No physicochemical interaction was found between the DTG and P407 in the fabricated solid dispersion; however, crystalline state of the drug was changed to amorphous as evident from the X-ray diffractogram. A rapid release of DTG was observed from the solid dispersion (>95%), which is highly significant (p<0.05) as compared to pure drug (11.40%), physical mixture (20.07%) and marketed preparation of DTG (35.30%). The drug release from the formulated solid dispersion followed Weibull model kinetics. Finally, the rapid drug release from the solid dispersion formulation revealed increased Cmax (14.56 μg/mL) when compared to the physical mixture (4.12 μg/mL) and pure drug (3.45 μg/mL). This was further reflected by improved bioavailability of DTG (AUC: 105.99±10.07 μg/h/mL) in the experimental Wistar rats when compared to the AUC of animals administered with physical mixture (54.45±6.58 μg/h/mL) and pure drug (49.27±6.16 μg/h/mL). Therefore, it could be concluded that the dissolution profile and simultaneously the bioavailability of DTG could be enhanced by means of the solid dispersion platform using the hydrophilic polymer, P407, which could be projected towards improved efficacy of the drug in HIV/AIDS.
  5. Jacob S, Nair AB, Boddu SHS, Gorain B, Sreeharsha N, Shah J
    Pharmaceutics, 2021 Aug 05;13(8).
    PMID: 34452167 DOI: 10.3390/pharmaceutics13081206
    Buccal mucosal membrane offers an attractive drug-delivery route to enhance both systemic and local therapy. This review discusses the benefits and drawbacks of buccal drug delivery, anatomical and physiological aspects of oral mucosa, and various in vitro techniques frequently used for examining buccal drug-delivery systems. The role of mucoadhesive polymers, penetration enhancers, and enzyme inhibitors to circumvent the formulation challenges particularly due to salivary renovation cycle, masticatory effect, and limited absorption area are summarized. Biocompatible mucoadhesive films and patches are favored dosage forms for buccal administration because of flexibility, comfort, lightness, acceptability, capacity to withstand mechanical stress, and customized size. Preparation methods, scale-up process and manufacturing of buccal films are briefed. Ongoing and completed clinical trials of buccal film formulations designed for systemic delivery are tabulated. Polymeric or lipid nanocarriers incorporated in buccal film to resolve potential formulation and drug-delivery issues are reviewed. Vaccine-enabled buccal films have the potential ability to produce both antibodies mediated and cell mediated immunity. Advent of novel 3D printing technologies with built-in flexibility would allow multiple drug combinations as well as compartmentalization to separate incompatible drugs. Exploring new functional excipients with potential capacity for permeation enhancement of particularly large-molecular-weight hydrophilic drugs and unstable proteins, oligonucleotides are the need of the hour for rapid advancement in the exciting field of buccal drug delivery.
  6. Dalal R, Shah J, Gorain B, Choudhury H, Jacob S, Mehta TA, et al.
    AAPS PharmSciTech, 2021 Oct 04;22(7):244.
    PMID: 34608546 DOI: 10.1208/s12249-021-02132-5
    Asenapine, an atypical antipsychotic agent, has been approved for the acute and maintenance treatment of schizophrenia and manic episodes of bipolar disorder. However, the extensive hepatic metabolism limits its oral bioavailability. Therefore, the objective of the current investigation was to develop sublingual film containing asenapine to enhance the therapeutic efficacy. Sublingual films containing asenapine were fabricated using polyethylene oxide and hydroxypropyl methylcellulose by solvent casting method. Design of experiment was used as a statistical tool to optimize the proportion of the film-forming polymers in order to establish the critical quality attributes of the drug formulation. The process was studied in detail by assessing risk of each step as well as parameters and material attributes to reduce the risk to a minimum. A control strategy was defined to ensure manufacture of films according to the target product profile by evaluation of intermediate quality attributes at the end of each process step. Results of optimized formulations showed rapid disintegration, adequate folding endurance, good percentage elongation, tensile strength, and viscosity. Besides, the results from the in vitro dissolution/ex vivo permeation studies showed rapid dissolution (100% in 6 min) and higher asenapine permeation (~ 80% in 90 min) through the sublingual epithelium. In vivo study indicates greater asenapine absorption (31.18 ± 5.01% of administered dose) within 5 min and was comparable with marketed formulation. In summary, the designing plan to develop asenapine formulation was successfully achieved with desired characteristics of the delivery tool for sublingual administration.
  7. Satyavert, Gupta S, Choudhury H, Jacob S, Nair AB, Dhanawat M, et al.
    Pharmacol Rep, 2021 Dec;73(6):1734-1743.
    PMID: 34283375 DOI: 10.1007/s43440-021-00312-5
    BACKGROUND: Curcumin, a natural polyphenol from Curcuma longa, is known to possess diversified pharmacological roles including anti-inflammatory, antioxidant, antiproliferative and antiangiogenic properties; however, its bioavailability is severely limited due to its poor solubility, poor absorption, rapid metabolism, and significant elimination. Hydrazinocurcumin (HZC), a novel analogue of curcumin has been reported to overcome the limitations of curcumin and also possesses multiple pharmacological activities. The present study aimed to evaluate the unexplored pharmacokinetic profile of this agent in experimental rats.

    METHODS: Drug formulations were administered to the experimental animals via oral, intravenous and intraperitoneal routes. Blood samples were collected at different pre-determined time intervals to determine the pharmacokinetic parameters. To understand the biodistribution profile of HCZ, tissue samples were isolated from different groups of Sprague-Dawley rats at different time points. The pharmacokinetic parameters of HZC were evaluated after administration through oral (100 mg/kg), intraperitoneal (100 mg/kg) and intravenous (10 mg/kg) routes.

    RESULTS: Significantly (p 

  8. Koe KH, Veettil SK, Maharajan MK, Syeed MS, Nair AB, Gopinath D
    J Evid Based Dent Pract, 2023 Mar;23(1):101778.
    PMID: 36914303 DOI: 10.1016/j.jebdp.2022.101778
    OBJECTIVE: To compare the relative efficacy and safety of antiviral agents used in the prevention and management of herpes labialis through a network meta-analysis of clinical trials.

    METHODS: A systematic search was performed in Ovid Medline PubMed, Cochrane Central Register of Controlled Trials (CENTRAL), Scopus and Clinicaltrials.gov for randomized controlled trials (RCTs) reporting a comparison of antiviral agents in the management and prevention of herpes labialis in healthy/immunocompetent adults. The data extracted from the selected RCTs were assessed and a network meta-analysis (NMA) was performed. The interventions were ranked according to the surface under the cumulative ranking (SUCRA).

    RESULTS: A total of 52 articles were included for qualitative synthesis and for the quantitative part, 26 articles were analyzed for the primary treatment outcome and 7 studies were analyzed for the primary prevention outcome. The combination therapy of oral valacyclovir and topical clobetasol was the best ranked with a mean reduction in healing time of -3.50 (95% CI -5.22 to -1.78) followed by vidarabine monophosphate of -3.22 (95% CI -4.59 to -1.85). No significant inconsistencies, heterogeneity, and publication bias were reported for TTH outcome analysis. For primary prevention outcomes, only 7 RCTs fulfilled the inclusion criteria, and none of the interventions was shown to be superior to each other. The absence of adverse events was reported by 16 studies, whereas other studies reported mild side effects only.

    CONCLUSION: NMA highlighted that several agents were effective in the management of herpes labialis among which the combination of oral valacyclovir with topical clobetasol therapy was the most effective in reducing the time to heal. However, further studies are required to determine which intervention is the most effective in preventing the recurrence of herpes labialis.

  9. Akrawi SH, Gorain B, Nair AB, Choudhury H, Pandey M, Shah JN, et al.
    Pharmaceutics, 2020 Sep 20;12(9).
    PMID: 32962195 DOI: 10.3390/pharmaceutics12090893
    The potential role of naringenin (NAR), a natural flavonoid, in the treatment of chronic wound has prompted the present research to deliver the drug in nanoemulsion (NE) form, where synergistic role of chitosan was achieved through development of chitosan-coated NAR NE (CNNE). The NE consisted of Capryol 90, Tween 20 and Transcutol P, which was fabricated by low-energy emulsification method to encapsulate NAR within the oil core. The optimization of the formulated NEs was performed using Box-Behnken statistical design to obtain crucial variable parameters that influence globule size, size distribution and surface charge. Finally, the optimized formulation was coated with different concentrations of chitosan and subsequently characterized in vitro. The size of the CNNE was found to be increased when the drug-loaded formulation was coated with chitosan. Controlled release characteristics depicted 67-81% release of NAR from the CNNE, compared to 89% from the NE formulation. Cytotoxicity study of the formulation was performed in vitro using fibroblast cell line (NIH-3T3), where no inhibition in proliferation of the cells was observed with CNNE. Finally, the wound healing potential of the CNNE was evaluated in an abrasion-created wound model in experimental animals where the animals were treated and compared histologically at 0 and 14 days. Significant improvement in construction of the abrasion wound was observed when the animals were treated with formulated CNNE, whereas stimulation of skin regeneration was depicted in the histological examination. Therefore, it could be summarized that the chitosan coating of the developed NAR NE is a potential platform to accelerate healing of wounds.
  10. Nair AB, Chaturvedi J, Venkatasubbareddy MB, Correa M, Rajan N, Sawkar A
    Malays J Med Sci, 2011 Jul;18(3):75-8.
    PMID: 22135605
    Respiratory fungal infections are usually found in immunocompromised individuals who have received either long-term steroid therapy or broad-spectrum anti-microbial therapy or have a non-resolving underlying chronic disease. These infections are seen as a part of bronchopulmonary fungal infections, and their isolated and primary occurrence as laryngeal diseases is highly uncommon. Laryngeal fungal infections can also mimic various diseases, such as gastroesophageal reflux disease, granulomatous diseases, leukoplakia, and carcinoma, thereby misleading the treating team from correct diagnosis and management. It is therefore important to identify the lesion at the earliest point possible to avoid morbid or life-threatening consequences. We report a case of isolated laryngeal candidiasis in an immunocompetent Indian male with an unusual presentation mimicking laryngeal carcinoma. The clinical and histological features are highlighted with a review of relevant literature to demonstrate the possibility of such an isolated fungal lesion, even in an immunocompetent individual.
  11. Bhanderi M, Shah J, Gorain B, Nair AB, Jacob S, Asdaq SMB, et al.
    Materials (Basel), 2021 Oct 22;14(21).
    PMID: 34771817 DOI: 10.3390/ma14216291
    Rivastigmine, a reversible cholinesterase inhibitor, is frequently indicated in the management of demented conditions associated with Alzheimer disease. The major hurdle of delivering this drug through the oral route is its poor bioavailability, which prompted the development of novel delivery approaches for improved efficacy. Due to numerous beneficial properties associated with nanocarriers in the drug delivery system, rivastigmine nanoparticles were fabricated to be administer through the intranasal route. During the development of the nanoparticles, preliminary optimization of processing and formulation parameters was done by the design of an experimental approach. The drug-polymer ratio, stirrer speed, and crosslinking time were fixed as independent variables, to analyze the effect on the entrapment efficiency (% EE) and in vitro drug release of the drug. The formulation (D8) obtained from 23 full factorial designs was further coated using Eudragit EPO to extend the release pattern of the entrapped drug. Furthermore, the 1:1 ratio of core to polymer depicted spherical particle size of ~175 nm, % EE of 64.83%, 97.59% cumulative drug release, and higher flux (40.39 ± 3.52 µg.h/cm2). Finally, the intranasal ciliotoxicity study on sheep nasal mucosa revealed that the exposure of developed nanoparticles was similar to the negative control group, while destruction of normal architecture was noticed in the positive control test group. Overall, from the in vitro results it could be summarized that the optimization of nanoparticles' formulation of rivastigmine for intranasal application would be retained at the application site for a prolonged duration to release the entrapped drug without producing any local toxicity at the mucosal region.
  12. Veettil SK, Sadoyu S, Bald EM, Chandran VP, Khuu SAT, Pitak P, et al.
    Br J Clin Pharmacol, 2022 Feb;88(4):1551-1566.
    PMID: 34622475 DOI: 10.1111/bcp.15103
    AIMS: The aim was to perform an umbrella review to summarise the existing evidence on proton-pump inhibitor (PPI) use and adverse outcomes and to grade the certainty of evidence.

    METHODS: Electronic databases were searched up to July 2021 for meta-analyses of cohort studies and/or randomised controlled trials (RCTs). Summary effect sizes from a random-effects model, between-study heterogeneity, 95% prediction interval, small-study effect, excess significance and credibility ceilings were devised to classify the credibility of evidence from meta-analyses of cohort studies, whereas the GRADE approach was used for meta-analyses of RCTs.

    RESULTS: In meta-analyses of cohort studies, 52 of the 91 examined associations were statistically significant (P ≤ .05). Convincing evidence emerged from main analysis for the association between PPI use and risk of all-site fracture and chronic kidney disease in the elderly population. However, none of these associations remained supported by convincing evidence after sensitivity analyses. The use of PPI is also associated with an increased risk of mortality due to COVID-19 infection and other related adverse outcomes, but the quality of evidence was weak. In meta-analyses of RCTs, 38 of the 63 examined associations were statistically significant. However, no associations were supported by high or moderate-quality evidence.

    CONCLUSION: This study's findings imply that most putative adverse outcomes associated with PPI use may not be supported by high-quality evidence and are likely to have been affected by underlying confounding factors. Future research is needed to confirm the causal association between PPI use and risk of fracture and chronic kidney disease.

  13. Venugopala KN, Chandrashekharappa S, Pillay M, Abdallah HH, Mahomoodally FM, Bhandary S, et al.
    PLoS One, 2019;14(6):e0217270.
    PMID: 31163040 DOI: 10.1371/journal.pone.0217270
    Indolizines are heteroaromatic compounds, and their synthetic analogues have reportedly showed promising pharmacological properties. In this study, a series of synthetic 7-methoxy-indolizine derivatives were synthesised, characterised and evaluated for in vitro whole-cell anti-tuberculosis (TB) screening against susceptible (H37Rv) and multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis (MTB) using the resazurin microplate assay method. The cytotoxicity was evaluated using the MTT assay. In silico molecular-docking study was conducted for compounds 5a-j against enoyl-[acyl-carrier] protein reductase, a key enzyme of the type II fatty acid synthesis that has attracted much interest for the development of novel anti-TB compounds. Thereafter, molecular dynamic (MD) simulation was undertaken for the most active inhibitors. Compounds 5i and 5j with the methoxy functional group at the meta position of the benzoyl group, which was at the third position of the indolizine nucleus, demonstrated encouraging anti-TB activity against MDR strains of MTB at 16 μg/mL. In silico studies showed binding affinity within the range of 7.07-8.57 kcal/mol, with 5i showing the highest binding affinity. Hydrogen bonding, π-π- interactions, and electrostatic interactions were common with the active site. Most of these interactions occurred with the catalytic amino acids (Pro193, Tyr158, Phe149, and Lys165). MD simulation showed that 5j possessed the highest binding affinity toward the enzyme, according to the two calculation methods (MM/PBSA and MM/GBSA). The single-crystal X-ray studies of compounds 5c and 5d revealed that the molecular arrangements in these two structures were mostly guided by C-H···O hydrogen-bonded dimeric motifs and C-H···N hydrogen bonds, while various secondary interactions (such as π···π and C-H···F) also contributed to crystal formation. Compounds 5a, 5c, 5i, and 5j exhibited no toxicity up to 500 μg/mL. In conclusion, 5i and 5j are promising anti-TB compounds that have shown high affinity based on docking and MD simulation results.
  14. Asdaq SMB, Ikbal AMA, Sahu RK, Bhattacharjee B, Paul T, Deka B, et al.
    Nanomaterials (Basel), 2021 Jul 16;11(7).
    PMID: 34361227 DOI: 10.3390/nano11071841
    The SARS-CoV-2 outbreak is the COVID-19 disease, which has caused massive health devastation, prompting the World Health Organization to declare a worldwide health emergency. The corona virus infected millions of people worldwide, and many died as a result of a lack of particular medications. The current emergency necessitates extensive therapy in order to stop the spread of the coronavirus. There are various vaccinations available, but no validated COVID-19 treatments. Since its outbreak, many therapeutics have been tested, including the use of repurposed medications, nucleoside inhibitors, protease inhibitors, broad spectrum antivirals, convalescence plasma therapies, immune-modulators, and monoclonal antibodies. However, these approaches have not yielded any outcomes and are mostly used to alleviate symptoms associated with potentially fatal adverse drug reactions. Nanoparticles, on the other hand, may prove to be an effective treatment for COVID-19. They can be designed to boost the efficacy of currently available antiviral medications or to trigger a rapid immune response against COVID-19. In the last decade, there has been significant progress in nanotechnology. This review focuses on the virus's basic structure, pathogenesis, and current treatment options for COVID-19. This study addresses nanotechnology and its applications in diagnosis, prevention, treatment, and targeted vaccine delivery, laying the groundwork for a successful pandemic fight.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links