Displaying all 10 publications

  1. Isiyaku AK, Ali AH, Nayan N
    Beilstein J Nanotechnol, 2020;11:695-702.
    PMID: 32461871 DOI: 10.3762/bjnano.11.57
    Indium tin oxide (ITO) is a widely used material for transparent conductive oxide (TCO) films due to its good optical and electrical properties. Improving the optoelectronic properties of ITO films with reduced thickness is crucial and quite challenging. ITO-based multilayer films with an aluminium-silver (Al-Ag) interlayer (ITO/Al-Ag/ITO) and a pure ITO layer (as reference) were prepared by RF and DC sputtering. The microstructural, optical and electrical properties of the ITO/Al-Ag/ITO (IAAI) films were investigated before and after annealing at 400 °C. X-ray diffraction measurements show that the insertion of the Al-Ag intermediate bilayer led to the crystallization of an Ag interlayer even at the as-deposited stage. Peaks attributed to ITO(222), Ag(111) and Al(200) were observed after annealing, indicating an enhancement in crystallinity of the multilayer films. The annealed IAAI film exhibited a remarkable improvement in optical transmittance (86.1%) with a very low sheet resistance of 2.93 Ω/sq. The carrier concentration increased more than twice when the Al-Ag layer was inserted between the ITO layers. The figure of merit of the IAAI multilayer contact has been found to be high at 76.4 × 10-3 Ω-1 compared to a pure ITO contact (69.4 × 10-3 Ω-1). These highly conductive and transparent ITO films with Al-Ag interlayer can be a promising contact for low-resistance optoelectronics devices.
  2. Khan MA, Nayan N, Shadiullah, Ahmad MK, Soon CF
    Nanomaterials (Basel), 2020 Jul 02;10(7).
    PMID: 32630689 DOI: 10.3390/nano10071298
    In the present work, a facile one-step hydrothermal synthesis of well-defined stabilized CuO nanopetals and its surface study by advanced nanocharacterization techniques for enhanced optical and catalytic properties has been investigated. Characterization by Transmission electron microscopy (TEM) analysis confirmed existence of high crystalline CuO nanopetals with average length and diameter of 1611.96 nm and 650.50 nm, respectively. The nanopetals are monodispersed with a large surface area, controlled morphology, and demonstrate the nanocrystalline nature with a monoclinic structure. The phase purity of the as-synthesized sample was confirmed by Raman spectroscopy and X-ray diffraction (XRD) patterns. A significantly wide absorption up to 800 nm and increased band gap were observed in CuO nanopetals. The valance band (VB) and conduction band (CB) positions at CuO surface are measured to be of +0.7 and -1.03 eV, respectively, using X-ray photoelectron spectroscopy (XPS), which would be very promising for efficient catalytic properties. Furthermore, the obtained CuO nanopetals in the presence of hydrogen peroxide ( H 2 O 2 ) achieved excellent catalytic activities for degradation of methylene blue (MB) under dark, with degradation rate > 99% after 90 min, which is significantly higher than reported in the literature. The enhanced catalytic activity was referred to the controlled morphology of monodispersed CuO nanopetals, co-operative role of H 2 O 2 and energy band structure. This work contributes to a new approach for extensive application opportunities in environmental improvement.
  3. Soon CF, Khaghani SA, Youseffi M, Nayan N, Saim H, Britland S, et al.
    Colloids Surf B Biointerfaces, 2013 Oct 1;110:156-62.
    PMID: 23711786 DOI: 10.1016/j.colsurfb.2013.04.012
    Widefield surface plasmon resonance (WSPR) microscopy provides high resolution imaging of interfacial interactions. We report the application of the WSPR imaging system in the study of the interaction between keratinocytes and liquid crystals (LC). Imaging of fixed keratinocytes cultured on gold coated surface plasmon substrates functionalized with a thin film of liquid crystals was performed in air using a 1.45NA objective based system. Focal adhesion of the cells adhered to glass and LC were further studied using immunofluorescence staining of the vinculin. The imaging system was also simulated with 2×2 scattering matrix to investigate the optical reflection of the resonant plasmonic wave via the glass/gold/cell and glass/gold/LC/cell layers. WSPR imaging indicated that keratinocytes are less spread and formed distinct topography of cell-liquid crystal couplings when cultured on liquid crystal coated substrates. The simulation indicates that glass/LC shifted the surface plasmon excitation angle to 75.39° as compared to glass/air interface at 44°. The WSPR microcopy reveals that the cells remodelled their topography of adhesion at different interfaces.
  4. Nafisah S, Morsin M, Jumadi NA, Nayan N, Md Shah NZA, Razali NL, et al.
    MethodsX, 2018;5:1618-1625.
    PMID: 30568883 DOI: 10.1016/j.mex.2018.12.002
    A one-step wet chemical approach or seedless growth process has several advantages compared to the traditional seed-mediated growth method (SMGM), such as being simpler and not requiring a multistep growth of seeds. This study had introduced a one-step wet chemical method to synthesis gold nanoplates on a solid substrate. The synthesis was carried out by simply immersing clean ITO substrate into a solution, which was made from mixing of gold chloride (precursor), cetyltrimethylammonium bromide or CTAB (stabilizing agent), and poly-l-lysine or PLL (reducing agent). Consequently, the size of the nanoplates in the range of (0.40 - 0.89) μm and a surface density within the range (21.89-57.19) % can be easily controlled by changing the concentration of PLL from 0.050 to 0.100 w/v % in H2O. At low PLL concentrations, the reduction of the gold precursor by PLL is limited, leading to the formation of gold nanoplates with a smaller size and surface density. The study on the sample by using energy-dispersive x-ray spectroscopy (EDS) confirmed that gold peaks occurred. The optical properties of the samples were examined by a UV-vis Spectrophotometer and showed that there was no strong surface plasmon resonance band observed at UV-vis and infrared regions, which agreed to micron-sized gold nanoplates. •Gold nanoplates synthesized on the substrate using a simple one-step wet chemical synthesis approach with poly-l-lysine (PLL) as a reducing agent and CTAB as a stabilizing agent.•The nanoplate's size and surface density was strongly dependent on the concentration of PLL.•Gold nanoplates synthesized using PLL with a concentration 0.050% showed perfect triangular shape, less by-products and more homogenous in size.
  5. Nayan N, van Erven G, Kabel MA, Sonnenberg AS, Hendriks WH, Cone JW
    J Sci Food Agric, 2019 Jun;99(8):4054-4062.
    PMID: 30737799 DOI: 10.1002/jsfa.9634
    BACKGROUND: White rot fungi have been used to improve the nutritive value of lignocellulose for ruminants. In feed analysis, the Van Soest method is widely used to determine the cell wall contents. To assess the reliability of this method (Method A) for determination of cell wall contents in fungal-treated wheat straw, we compared a combined monosaccharide analysis and pyrolysis coupled to gas chromatography with mass spectrometry (Py-GC/MS) (Method B). Ruminal digestibility, measured as in vitro gas production (IVGP), was subsequently used to examine which method explains best the effect of fungal pretreatment on the digestibility of wheat straw.

    RESULTS: Both methods differed considerably in the mass recoveries of the individual cell wall components, which changed on how we assess their degradation characteristics. For example, Method B gave a higher degradation of lignin (61.9%), as compared to Method A (33.2%). Method A, however, showed a better correlation of IVGP with the ratio of lignin to total structural carbohydrates, as compared to Method B (Pearson's r of -0.84 versus -0.69). Nevertheless, Method B provides a more accurate quantification of lignin, reflecting its actual modification and degradation. With the information on the lignin structural features, Method B presents a substantial advantage in understanding the underlying mechanisms of lignin breakdown. Both methods, however, could not accurately quantify the cellulose contents - among others, due to interference of fungal biomass.

    CONCLUSION: Method A only accounts for the recalcitrant residue and therefore is more suitable for evaluating ruminal digestibility. Method B allows a more accurate quantification of cell wall, required to understand and better explains the actual modification of the cell wall. The suitability of both methods, therefore, depends on their intended purposes. © 2019 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.

  6. Khan MA, Nayan N, Shadiullah, Ahmad MK, Fhong SC, Tahir M, et al.
    Molecules, 2021 May 04;26(9).
    PMID: 34064537 DOI: 10.3390/molecules26092700
    In this work, advanced nanoscale surface characterization of CuO Nanoflowers synthesized by controlled hydrothermal approach for significant enhancement of catalytic properties has been investigated. The CuO nanoflower samples were characterized by field-emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, high-resolution transmission electron microscopy (HR-TEM), selected-area electron diffraction (SAED), high-angular annular dark field scanning transmission electron microscopy (HAADF-STEM) with elemental mapping, energy dispersive spectroscopy (STEM-EDS) and UV-Vis spectroscopy techniques. The nanoscale analysis of the surface study of monodispersed individual CuO nanoflower confirmed the fine crystalline shaped morphology composed of ultrathin leaves, monoclinic structure and purified phase. The result of HR-TEM shows that the length of one ultrathin leaf of copper oxide nanoflower is about ~650-700 nm, base is about ~300.77 ± 30 nm and the average thickness of the tip of individual ultrathin leaf of copper oxide nanoflower is about ~10 ± 2 nm. Enhanced absorption of visible light ~850 nm and larger value of band gap energy (1.68 eV) have further supported that the as-grown material (CuO nanoflowers) is an active and well-designed surface morphology at the nanoscale level. Furthermore, significant enhancement of catalytic properties of copper oxide nanoflowers in the presence of H2O2 for the degradation of methylene blue (MB) with efficiency ~96.7% after 170 min was obtained. The results showed that the superb catalytic performance of well-fabricated CuO nanoflowers can open a new way for substantial applications of dye removal from wastewater and environment fields.
  7. Lim GP, Soon CF, Ma NL, Morsin M, Nayan N, Ahmad MK, et al.
    Environ Res, 2021 10;201:111592.
    PMID: 34175291 DOI: 10.1016/j.envres.2021.111592
    MXene based nanomaterial is an uprising two-dimensional material gaining tremendous scientific attentions due to its versatile properties for the applications in electronic devices, power generation, sensors, drug delivery, and biomedicine. However, the cytotoxic effects of MXene still remained a huge concern. Therefore, stringent analysis of biocompatibility of MXene is an essential requirement before introduction to human physiological system. Several in vitro and in vivo toxicological studies have been reported to investigate the interactions between MXenes with living organisms such as microbes, mammalian cells and animal models. The biological response and cytotoxicity reported were dependent on the physicochemical properties of MXene. The biocompatibility and cytotoxicity of MXene were dependent on size, dose, and surface coating. This review demystifies the in vitro and in vivo biocompatibility studies associated with MXene. Various methods proposed to mitigate the cytotoxicity of MXene for in vivo applications were revealed. The machine learning methods were developed to predict the cytotoxicity of experimentally synthesized MXene compounds. Finally, we also discussed the current research gaps of applying MXenes in biomedical interventions.
  8. Soon CF, Omar WI, Berends RF, Nayan N, Basri H, Tee KS, et al.
    Micron, 2014 Jan;56:73-9.
    PMID: 24231674 DOI: 10.1016/j.micron.2013.10.011
    This study aimed at examining the biophysical characteristics of human derived keratinocytes (HaCaT) cultured on cholesteryl ester liquid crystals (CELC). CELC was previously shown to improve sensitivity in sensing cell contractions. Characteristics of the cell integrin expressions and presence of extracellular matrix (ECM) proteins on the liquid crystals were interrogated using various immunocytochemical techniques. The investigation was followed by characterization of the chemical properties of the liquid crystals (LC) after immersion in cell culture media using Fourier transform infrared spectroscopy (FTIR). The surface morphology of cells adhered to the LC was studied using atomic force microscopy (AFM). Consistent with the expressions of the integrins α2, α3 and β1, extracellular matrix proteins (laminin, collagen type IV and fibronectin) were found secreted by the HaCaT onto CELC and these proteins were also secreted by cells cultured on the glass substrates. FTIR analysis of the LC revealed the existence of spectrum assigned to cholesterol and ester moieties that are essential compounds for the metabolizing activities of keratinocytes. The immunostainings indicated that cell adhesion on the LC is mediated by self-secreted ECM proteins. As revealed by the AFM imaging, the constraint in cell membrane spread on the LC leads to the increase in cell surface roughness and thickness of cell membrane. The biophysical expressions of cells on biocompatible CELC suggested that CELC could be a new class of biological relevant material.
  9. Soon CF, Tee KS, Wong SC, Nayan N, Sargunan Sundra, Ahmad MK, et al.
    Cytotechnology, 2018 Feb;70(1):13-29.
    PMID: 29189979 DOI: 10.1007/s10616-017-0168-2
    Growing three dimensional (3D) cells is an emerging research in tissue engineering. Biophysical properties of the 3D cells regulate the cells growth, drug diffusion dynamics and gene expressions. Scaffold based or scaffoldless techniques for 3D cell cultures are rarely being compared in terms of the physical features of the microtissues produced. The biophysical properties of the microtissues cultured using scaffold based microencapsulation by flicking and scaffoldless liquid crystal (LC) based techniques were characterized. Flicking technique produced high yield and highly reproducible microtissues of keratinocyte cell lines in alginate microcapsules at approximately 350 ± 12 pieces per culture. However, microtissues grown on the LC substrates yielded at lower quantity of 58 ± 21 pieces per culture. The sizes of the microtissues produced using alginate microcapsules and LC substrates were 250 ± 25 μm and 141 ± 70 μm, respectively. In both techniques, cells remodeled into microtissues via different growth phases and showed good integrity of cells in field-emission scanning microscopy (FE-SEM). Microencapsulation packed the cells in alginate scaffolds of polysaccharides with limited spaces for motility. Whereas, LC substrates allowed the cells to migrate and self-stacking into multilayered structures as revealed by the nuclei stainings. The cells cultured using both techniques were found viable based on the live and dead cell stainings. Stained histological sections showed that both techniques produced cell models that closely replicate the intrinsic physiological conditions. Alginate microcapsulation and LC based techniques produced microtissues containing similar bio-macromolecules but they did not alter the main absorption bands of microtissues as revealed by the Fourier transform infrared spectroscopy. Cell growth, structural organization, morphology and surface structures for 3D microtissues cultured using both techniques appeared to be different and might be suitable for different applications.
  10. Chung ELT, Alghirani MM, Kamalludin MH, Nayan N, Jesse FFA, Wei OTA, et al.
    Br Poult Sci, 2021 Feb;62(1):32-37.
    PMID: 32875813 DOI: 10.1080/00071668.2020.1817327
    1. A vaccination regime is a schedule for the administration of vaccines which may vary according to country or even by farm. This study aimed to measure the production and health performance of broilers treated with different vaccination regimes. 2. A total of 108 Cobb 500 broiler birds were randomly divided into three treatment groups, with six replicates consisting of six birds per replicate. Each treatment group was administered with different vaccination regimes against Newcastle Disease (ND), Infectious Bronchitis (IB) and Infectious Bursal Disease (IBD). Treatment 1 (T1) broilers were vaccinated against ND+IB and IBD on days 7 and 14 of age, respectively (control); Treatment 2 (T2) broilers were vaccinated against ND+IB on days 3 and 7 of age, and IBD on day 14; and Treatment 3 (T3) broilers were vaccinated against ND+IB on days 7 and 21 and IBD on day 14. Throughout the 42-day study period, data and samples were collected to determine the growth performance, immune status, carcase characteristics and meat quality. 3. There were significant differences (P 
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links