Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. Chan CH, Yusoff R, Ngoh GC
    Food Chem, 2013 Sep 1;140(1-2):147-53.
    PMID: 23578626 DOI: 10.1016/j.foodchem.2013.02.057
    A modeling technique based on absorbed microwave energy was proposed to model microwave-assisted extraction (MAE) of antioxidant compounds from cocoa (Theobroma cacao L.) leaves. By adapting suitable extraction model at the basis of microwave energy absorbed during extraction, the model can be developed to predict extraction profile of MAE at various microwave irradiation power (100-600 W) and solvent loading (100-300 ml). Verification with experimental data confirmed that the prediction was accurate in capturing the extraction profile of MAE (R-square value greater than 0.87). Besides, the predicted yields from the model showed good agreement with the experimental results with less than 10% deviation observed. Furthermore, suitable extraction times to ensure high extraction yield at various MAE conditions can be estimated based on absorbed microwave energy. The estimation is feasible as more than 85% of active compounds can be extracted when compared with the conventional extraction technique.
  2. Chan CH, Ngoh GC, Yusoff R
    Pharmacogn Rev, 2012 Jan;6(11):22-8.
    PMID: 22654401 DOI: 10.4103/0973-7847.95854
    A study has been conducted with the aim to provide researchers with general information on anti diabetic extracts based on relevant research articles collected from 34 reliable medical journals. The study showed that Asian and African continents have 56% and 17% share of the worldwide distribution of therapeutic herbal plants, respectively. In Asia, India and China are the leading countries in herbal plants research, and there has been an increase in medicinal research on plants extract for diabetes treatment since 1995 in these regions. The information collected shows that plant leaves are about 20% more favorable for storing active ingredients, as compared to other parts of herbal plants. A brief review on the extraction techniques for the mentioned parts is also included. Furthermore, the acting mechanisms for the anti diabetic activity were described, and the related active ingredients were identified. The findings reveal that most of the anti diabetic research is focused on the alteration of glucose metabolism to prevent diabetes.
  3. Shahla S, Ngoh GC, Yusoff R
    Bioresour Technol, 2012 Jan;104:1-5.
    PMID: 22154586 DOI: 10.1016/j.biortech.2011.11.010
    In this paper, the kinetics of palm oil ethanolysis with various models have been investigated in a temperature range of 25-55 °C. The highest yield was achieved when the conversion to ethyl ester was 97.5±0.5% in the stated temperature range, using ethanol:oil molar ratio of 12:1, and 1.0 wt.% sodium ethoxide. The level of conformity of the reaction with reversible second order, irreversible second order and first order kinetic models were evaluated by means of the R(2) values of the linear curves. The ethanolysis showed the best conformity with irreversible second order kinetic model with 92-98% level of confidence. The reaction rate constants were within 0.018-0.088 dm(3)/mol min and the activation energy of the reaction was 42.36 kJ/mol.
  4. Lee SK, Yeoh HK, Chua AS, Ngoh GC
    Water Sci Technol, 2012;66(3):620-6.
    PMID: 22744694 DOI: 10.2166/wst.2012.216
    The titrimetric method is used for on-site measurement of the concentration of volatile fatty acids (VFAs) in anaerobic treatment. In current practice, specific and interpolated pH-volume data points are used to obtain the concentration of VFA by solving simultaneous equations iteratively to convergence (denoted as SEq). Here, the least squares method (LSM) is introduced as an elegant alternative. Known concentrations of VFA (acetic acid and/or propionic acid) ranging from to 200 to 1,000 mg/L were determined using SEq and LSM. Using standard numbers of data points, SEq gave more accurate results compared with LSM. However, results favoured LSM when all data points in the range were included without any interpolation. For model refinement, unit monovalent activity coefficient (f(m) = 1) was found reasonable and arithmetic averages of dissociation constants and molecular weight of 80 mol% acetic acid were recommended in the model for VFA determination of mixtures. An accurate result was obtained with a mixture containing more VFA (butyric acid and valeric acid). In a typical VFA measurement of real anaerobic effluent, a satisfactory result with an error of 14% was achieved. LSM appears to be a promising mathematical model solver for determination of concentration of VFA in the titrimetric method. Validation of LSM in the presence of other electrolytes deserves further exploration.
  5. Ang TN, Ngoh GC, Chua AS
    Bioresour Technol, 2013 May;135:116-9.
    PMID: 23138072 DOI: 10.1016/j.biortech.2012.09.045
    The performance of alkalis (NaOH and Ca(OH)2) and acids (H2SO4, HCl, H3PO4, CH3COOH, and HNO3) in the pretreatment of rice husk was screened, and a suitable reagent was assessed for subsequent optimization using response surface methodology. From the assessment, HCl that hydrolysed rice husk well was optimized with three parameters (HCl loading, pretreatment duration, and temperature) using Box-Behnken Design. The optimized condition (0.5% (w/v) HCl loading, 125 °C, 1.5 h) is relatively mild, and resulted in ~22.3mg TRS/ml hydrolysate. The reduced model developed has good predictability, where the predicted and experimental results differ by only 2%. The comprehensive structural characterization studies that involved FT-IR, XRD, SEM, and BET surface area determination showed that the pretreated rice husk consisted mainly of cellulose and lignin. Compared to untreated rice husk, pretreated rice husk possessed increased pore size and pore volume, which are expected to be beneficial for fungal growth during fermentation.
  6. Chan CH, Yusoff R, Ngoh GC, Kung FW
    J Chromatogr A, 2011 Sep 16;1218(37):6213-25.
    PMID: 21820119 DOI: 10.1016/j.chroma.2011.07.040
    Microwave-assisted extraction (MAE) is widely employed in the analysis and the extraction of active compounds from plants. This review summarizes the research done during the last decade on the MAE of active ingredients from plants. Advances and modifications to improve the performance of MAE are presented and discussed in detail. Modified MAE such as vacuum microwave-assisted extraction (VMAE), nitrogen-protected microwave-assisted extraction (NPMAE), ultrasonic microwave-assisted extraction (UMAE), dynamic microwave-assisted extraction (DMAE) and other advancements in MAE are also detailed in this article. In addition, the microwave extraction procedures and the important parameters influencing its performance are also included, together with the advantages and the drawbacks of each MAE techniques.
  7. Ong YH, Chua AS, Lee BP, Ngoh GC
    Water Sci Technol, 2013;67(2):340-6.
    PMID: 23168633 DOI: 10.2166/wst.2012.552
    To date, little information is known about the operation of the enhanced biological phosphorus removal (EBPR) process in tropical climates. Along with the global concerns on nutrient pollution and the increasing array of local regulatory requirements, the applicability and compliance accountability of the EBPR process for sewage treatment in tropical climates is being evaluated. A sequencing batch reactor (SBR) inoculated with seed sludge from a conventional activated sludge (CAS) process was successfully acclimatized to EBPR conditions at 28 °C after 13 days' operation. Enrichment of Candidatus Accumulibacter phosphatis in the SBR was confirmed through fluorescence in situ hybridization (FISH). The effects of operational pH and influent C:P ratio on EBPR were then investigated. At pH 7 or pH 8, phosphorus removal rates of the EBPR processes were relatively higher when operated at C:P ratio of 3 than C:P ratio of 10, with 0.019-0.020 and 0.011-0.012 g-P/g-MLVSS•day respectively. One-year operation of the 28 °C EBPR process at C:P ratio of 3 and pH 8 demonstrated stable phosphorus removal rate of 0.020 ± 0.003 g-P/g-MLVSS•day, corresponding to effluent with phosphorus concentration <0.5 mg/L. This study provides the first evidence on good EBPR activity at relatively high temperature, indicating its applicability in a tropical climate.
  8. Lee KM, Ngoh GC, Chua AS
    Bioresour Technol, 2013 Feb;130:1-7.
    PMID: 23280179 DOI: 10.1016/j.biortech.2012.11.124
    The production of reducing sugars from sago waste via sequential ionic liquid dissolution-solid acid saccharification was optimized in this study. Ionic liquid dissolution of sago waste with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) was conducted prior to the solid acid saccharification with Amberlyst 15 (A15). The effect of time, temperature and substrate loading during dissolution reaction; and the effect of time, temperature and catalyst loading during saccharification reaction were examined by applying central composite design (CCD) separately. Both dissolution and saccharification reactions were respectively modeled into quadratic polynomial equations with good predictive accuracies. A high reducing sugars yield of 98.3% was obtained under the optimized conditions, i.e. dissolution at 1.75h, 160°C, 1.5% substrate loading, and saccharification at 0.5h, 130°C, 4% catalyst loading. From comparison studies of different saccharification schemes, the sequential ionic liquid dissolution-solid acid saccharification has proven to be a potential method in reducing sugars production from the lignocellulosic biomass.
  9. Tan YT, Ngoh GC, Chua ASM
    Bioresour Technol, 2019 Jun;281:359-366.
    PMID: 30831515 DOI: 10.1016/j.biortech.2019.02.010
    In this study, acidic deep eutectic solvents (DES) synthesized from various organic carboxylic acid hydrogen bond donors were applied to lignocellulosic oil palm empty fruit bunch (EFB) pretreatment. The influence of functional group types on acid and their molar ratios with hydrogen bond acceptor on lignin extraction were evaluated. The result showed presence of hydroxyl group and short alkyl chain enhanced biomass fractionation and lignin extraction. Choline chloride:lactic acid (CC-LA) with the ratio of 1:15 and choline chloride:formic acid (CC-FA) with 1:2 ratio extracted more than 60 wt% of lignin. CC-LA DES-extracted lignin (DEEL) exhibited comparable reactivity with technical and commercial lignin based on its phenolic hydroxyl content (3.33-3.72 mmol/glignin). Also, the DES-pretreated EFB comprised of enriched glucan content after biopolymer fractionation. Both DES-pretreated EFB and DEEL can be potential feedstock for subsequent conversion processes. This study presented DES as an effective and facile pretreatment method for reactive lignin extraction.
  10. Ho YK, Doshi P, Yeoh HK, Ngoh GC
    Biotechnol Bioeng, 2015 Oct;112(10):2084-105.
    PMID: 25899009 DOI: 10.1002/bit.25616
    Simultaneous Saccharification and Fermentation (SSF) is a process where microbes have to first excrete extracellular enzymes to break polymeric substrates such as starch or cellulose into edible nutrients, followed by in situ conversion of those nutrients into more valuable metabolites via fermentation. As such, SSF is very attractive as a one-pot synthesis method of biological products. However, due to the co-existence of multiple biochemical steps, modeling SSF faces two major challenges. The first is to capture the successive chain-end and/or random scission of the polymeric substrates over time, which determines the rate of generation of various fermentable substrates. The second is to incorporate the response of microbes, including their preferential substrate utilization, to such a complex broth. Each of the above-mentioned challenges has manifested itself in many related areas, and has been competently but separately attacked with two diametrically different tools, i.e., the Population Balance Modeling (PBM) and the Cybernetic Modeling (CM), respectively. To date, they have yet to be applied in unison on SSF resulting in a general inadequacy or haphazard approaches to examine the dynamics and interactions of depolymerization and fermentation. To overcome this unsatisfactory state of affairs, here, the general linkage between PBM and CM is established to model SSF. A notable feature is the flexible linkage, which allows the individual PBM and CM models to be independently modified to the desired levels of detail. A more general treatment of the secretion of extracellular enzyme is also proposed in the CM model. Through a case study on the growth of a recombinant Saccharomyces cerevisiae capable of excreting a chain-end scission enzyme (glucoamylase) on starch, the interlinked model calibrated using data from the literature (Nakamura et al., Biotechnol. Bioeng. 53:21-25, 1997), captured features not attainable by existing approaches. In particular, the effect of various enzymatic actions on the temporal evolution of the polymer distribution and how the microbes respond to the diverse polymeric environment can be studied through this framework.
  11. Yoon LW, Ngoh GC, Chua AS
    Enzyme Microb Technol, 2013 Sep 10;53(4):250-6.
    PMID: 23931690 DOI: 10.1016/j.enzmictec.2013.05.005
    This study examined the potential of untreated and alkali-pretreated sugarcane bagasse (SCB) in cellulase, reducing sugar (RS) and fungal biomass production via solid state fermentation (SSF) using Pycnoporus sanguineus. The impact of the composition, structure and cellulase adsorption ability of SCB on the production of cellulase, RS and fungal biomass was investigated. From the morphological and compositional analyses, untreated SCB has relatively more structural changes with a higher percentage of depolymerisation on the cellulose, hemicellulose and lignin content compared to alkali-pretreated SCB. Thus, untreated SCB favoured the production of cellulase and fungal biomass whereas alkali-pretreated SCB yielded a higher amount of RS. The composition and morphology of untreated SCB did not encourage RS production and this suggested that RS produced during SSF might be consumed in a faster rate by the more abundantly grown fungus. Besides that, alkali-pretreated SCB with higher cellulase adsorption ability could have adsorbed the cellulase produced and resulted in a lower cellulase titre. In short, the production of specific bioproducts via SSF is dependent on the structure and composition of the substrate applied.
  12. Liew SQ, Ngoh GC, Yusoff R, Teoh WH
    Int J Biol Macromol, 2016 Dec;93(Pt A):426-435.
    PMID: 27565298 DOI: 10.1016/j.ijbiomac.2016.08.065
    This study aims to optimize sequential ultrasound-microwave assisted extraction (UMAE) on pomelo peel using citric acid. The effects of pH, sonication time, microwave power and irradiation time on the yield and the degree of esterification (DE) of pectin were investigated. Under optimized conditions of pH 1.80, 27.52min sonication followed by 6.40min microwave irradiation at 643.44W, the yield and the DE value of pectin obtained was respectively at 38.00% and 56.88%. Based upon optimized UMAE condition, the pectin from microwave-ultrasound assisted extraction (MUAE), ultrasound assisted extraction (UAE) and microwave assisted extraction (MAE) were studied. The yield of pectin adopting the UMAE was higher than all other techniques in the order of UMAE>MUAE>MAE>UAE. The pectin's galacturonic acid content obtained from combined extraction technique is higher than that obtained from sole extraction technique and the pectin gel produced from various techniques exhibited a pseudoplastic behaviour. The morphological structures of pectin extracted from MUAE and MAE closely resemble each other. The extracted pectin from UMAE with smaller and more regular surface differs greatly from that of UAE. This has substantiated the highest pectin yield of 36.33% from UMAE and further signified their compatibility and potentiality in pectin extraction.
  13. Tan YT, Chua ASM, Ngoh GC
    Bioresour Technol, 2020 Feb;297:122522.
    PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522
    Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
  14. Zainal-Abidin MH, Hayyan M, Ngoh GC, Wong WF
    ACS Omega, 2020 Jan 28;5(3):1656-1668.
    PMID: 32010840 DOI: 10.1021/acsomega.9b03709
    The application of graphene in the field of drug delivery has attracted massive interest among researchers. However, the high toxicity of graphene has been a drawback for its use in drug delivery. Therefore, to enhance the biocompatibility of graphene, a new route was developed using ternary natural deep eutectic solvents (DESs) as functionalizing agents, which have the capability to incorporate various functional groups and surface modifications. Physicochemical characterization analyses, including field emission scanning electron microscope, fourier-transform infrared spectroscopy, Raman spectroscopy, Brunauer-Emmett-Teller, X-ray diffraction, and energy dispersive X-ray, were used to verify the surface modifications introduced by the functionalization process. Doxorubicin was loaded onto the DES-functionalized graphene. The results exhibited significantly improved drug entrapment efficiency (EE) and drug loading capacity (DLC) compared with pristine graphene and oxidized graphene. Compared with unfunctionalized graphene, functionalization with DES choline chloride (ChCl):sucrose:water (4:1:4) resulted in the highest drug loading capacity (EE of 51.84% and DLC of 25.92%) followed by DES ChCl:glycerol:water (1:2:1) (EE of 51.04% and DLC of 25.52%). Following doxorubicin loading, graphene damaged human breast cancer cell line (MCF-7) through the generation of intracellular reactive oxygen species (>95%) and cell cycle disruption by increase in the cell population at S phase and G2/M phase. Thus, DESs represent promising green functionalizing agents for nanodrug carriers. To the best of our knowledge, this is the first time that DES-functionalized graphene has been used as a nanocarrier for doxorubicin, illustrating the potential application of DESs as functionalizing agents in drug delivery systems.
  15. Ang TN, Ngoh GC, Chua AS, Lee MG
    Biotechnol Biofuels, 2012 Sep 07;5(1):67.
    PMID: 22958710 DOI: 10.1186/1754-6834-5-67
    BACKGROUND: In the present study, three ionic liquids, namely 1-butyl-3-methylimidazolium chloride ([BMIM]Cl), 1-ethyl-3-methylimidazolium acetate ([EMIM]OAc), and 1-ethyl-3-methylimidazolium diethyl phosphate ([EMIM]DEP), were used to partially dissolve rice husk, after which the cellulose were regenerated by the addition of water. The aim of the investigation is to examine the implications of the ionic liquid pretreatments on rice husk composition and structure.

    RESULTS: From the attenuated total reflectance Fourier transform-infrared (ATR FT-IR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM) results, the regenerated cellulose were more amorphous, less crystalline, and possessed higher structural disruption compared with untreated rice husk. The major component of regenerated cellulose from [BMIM]Cl and [EMIM]DEP pretreatments was cellulose-rich material, while cellulose regenerated from [EMIM]OAc was a matrix of cellulose and lignin. Cellulose regenerated from ionic pretreatments could be saccharified via enzymatic hydrolysis, and resulted in relatively high reducing sugars yields, whereas enzymatic hydrolysis of untreated rice husk did not yield reducing sugars. Rice husk residues generated from the ionic liquid pretreatments had similar chemical composition and amorphousity to that of untreated rice husk, but with varying extent of surface disruption and swelling.

    CONCLUSIONS: The structural architecture of the regenerated cellulose and rice husk residues showed that they could be used for subsequent fermentation or derivation of cellulosic compounds. Therefore, ionic liquid pretreatment is an alternative in the pretreatment of lignocellulosic biomass in addition to the conventional chemical pretreatments.

  16. Ong YH, Chua AS, Lee BP, Ngoh GC, Hashim MA
    Water Environ Res, 2012 Jan;84(1):3-8.
    PMID: 22368821
    A sequencing batch reactor (SBR) seeded with flocculated sludge and fed with synthetic wastewater was operated for an enhanced biological phosphorus removal (EBPR) process. Eight weeks after reactor startup, sludge granules were observed. The granules had a diameter of 0.5 to 3.0 mm and were brownish in color and spherical or ellipsoidal in shape. No significant change was observed in sludge granule size when operational pH was changed from 7 to 8. The 208-day continuous operation of the SBR showed that sludge granules were stably maintained with a sludge volume index (SVI) between 30 to 55 mL/g while securing a removal efficiency of 83% for carbon and 97% for phosphorus. Fluorescent in situ hybridization (FISH) confirmed the enrichment of polyphosphate accumulating organisms (PAOs) in the SBR. The observations of sludge granulation in this study encourage further studies in the development of granules-based EBPR process.
  17. Choo CK, Kong XY, Goh TL, Ngoh GC, Horri BA, Salamatinia B
    Carbohydr Polym, 2016 Mar 15;138:16-26.
    PMID: 26794733 DOI: 10.1016/j.carbpol.2015.11.060
    Development of new materials for different applications especially as bio-composites has received great attention. This study concentrates on development of a biopolymer based on chitosan (CT) and halloysite nanotubes (HNT) and evaluates the copper removal intake as a potential application of this bio-composite. In this study, CT/HNT beads were prepared by ultrasonic-assisted extrusion-dripping method for the first time. Two sources of HNTs (i.e. Dragonite and Matauri Bay) were added into a chitosan solution (2wt.%) at various loading fractions (25, 50, 75wt.%). The effect of ultrasound as a mixing device was also studied by varying the amplitude at constant frequency of 25%, 50% and 75%. Characteristics and physical properties of the prepared CT/HNT beads were also analyzed by SEM, FTIR, TGA and BET the results show that introducing HNT to chitosan increases the adsorption capacity toward copper ions; however HNT loading fraction above 50wt.% resulted in a decrease in adsorption capacity attributed to limited accessibility of the amino groups. The adsorption capacity of the CT/HNT beads prepared from Dragonite source had a larger adsorption capacity of 14.2mg/g as compared to that of Matauri Bay, 10.55mg/g. It was observed that the adsorption capacity of the beads toward copper ions decreased when the loading fraction of HNT is increased at constant ultrasound amplitude. The result of this study helps to understand the links between the characteristics and adsorption abilities of CT/HNT beads.
  18. How SW, Chua ASM, Ngoh GC, Nittami T, Curtis TP
    Sci Total Environ, 2019 Nov 25;693:133526.
    PMID: 31376760 DOI: 10.1016/j.scitotenv.2019.07.332
    Many wastewater treatment plants (WWTPs) operating in biological nitrogen removal activated sludge process in the tropics are facing the pressure of increasingly stringent effluent standards while seeking solutions to reduce the plants' energy consumption and operating cost. This study investigated the feasibility of applying low-dissolved oxygen (low-DO) nitrification and utilizing slowly-biodegradable chemical oxygen demand (sbCOD) for denitrification, which helps to reduce energy usage and operating cost in treating low soluble COD-to-nitrogen tropical wastewater. The tropical wastewater was first characterized using wastewater fractionation and respirometry batch tests. Then, a lab-scale sequencing batch reactor (SBR) was operated to evaluate the long-term stability of low-DO nitrification and utilizing sbCOD for denitrification in an anoxic-oxic (AO) process treating tropical wastewater. The wastewater fractionation experiment revealed that particulate settleable solids (PSS) in the wastewater provided slowly-biodegradable COD (sbCOD), which made up the major part (51 ± 10%) of the total COD. The PSS hydrolysis rate constant at tropical temperature (30 °C) was 2.5 times higher than that at 20 °C, suggesting that sbCOD may be utilized for denitrification. During the SBR operation, high nitrification efficiency (93 ± 6%) was attained at low-DO condition (0.9 ± 0.1 mg O2/L). Utilizing sbCOD for post-anoxic denitrification in the SBR reduced the effluent nitrate concentration. Quantitative polymerase chain reaction, 16S rRNA amplicon sequencing and fluorescence in-situ hybridization revealed that the genus Nitrospira was a dominant nitrifier. 16S rRNA amplicon sequencing result suggested that 50% of the Nitrospira-related operational taxonomic units were affiliated with comammox, which may imply that the low-DO condition and the warm wastewater promoted their growth. The nitrogen removal in a tropical AO process was enhanced by incorporating low-DO nitrification and utilizing sbCOD for post-anoxic denitrification, which contributes to an improved energy sustainability of WWTPs.
  19. How SW, Nittami T, Ngoh GC, Curtis TP, Chua ASM
    Chemosphere, 2020 Nov;259:127444.
    PMID: 32640378 DOI: 10.1016/j.chemosphere.2020.127444
    In this study, we assessed and optimized a low-dissolved-oxygen oxic-anoxic (low-DO OA) process to achieve a low-cost and sustainable solution for wastewater treatment systems in the developing tropical countries treating low chemical oxygen demand-to-nitrogen ratio (COD/N) wastewater. The low-DO OA process attained complete ammonia removal and the effluent nitrate nitrogen (NO3-N) was below 0.3 mg/L. The recommended hydraulic retention time and sludge retention time (SRT) were 16 h and 20 days, respectively. The 16S rRNA sequencing data revealed that long SRT (20 days) encouraged the growth of nitrite-oxidizing bacteria (NOB) affiliated with "Candidatus Nitrospira defluvii". Comammox made up 10-20% of the Nitrospira community. NOB and comammox related to Nitrospira were enriched at long SRT (20 days) to achieve good low-DO nitrification performance. The low-DO OA process was efficient and has simpler design than conventional processes, which are keys for sustainable wastewater treatment systems in the developing countries treating low COD/N wastewater.
  20. Ong YH, Chua ASM, Fukushima T, Ngoh GC, Shoji T, Michinaka A
    Water Res, 2014 Nov 01;64:102-112.
    PMID: 25046374 DOI: 10.1016/j.watres.2014.06.038
    The applicability of the enhanced biological phosphorus removal (EBPR) process for the removal of phosphorus in warm climates is uncertain due to frequent reports of EBPR deterioration at temperature higher than 25 °C. Nevertheless, a recent report on a stable and efficient EBPR process at 28 °C has inspired the present study to examine the performance of EBPR at 24 °C-32 °C, as well as the PAOs and GAOs involved, in greater detail. Two sequencing batch reactors (SBRs) were operated for EBPR in parallel at different temperatures, i.e., SBR-1 at 28 °C and SBR-2 first at 24 °C and subsequently at 32 °C. Both SBRs exhibited high phosphorus removal efficiencies at all three temperatures and produced effluents with phosphorus concentrations less than 1.0 mg/L during the steady state of reactor operation. Real-time quantitative polymerase chain reaction (qPCR) revealed Accumulibacter-PAOs comprised 64% of the total bacterial population at 24 °C, 43% at 28 °C and 19% at 32 °C. Based on fluorescent in situ hybridisation (FISH), the abundance of Competibacter-GAOs at both 24 °C and 28 °C was rather low (<10%), while it accounted for 40% of the total bacterial population at 32 °C. However, the smaller Accumulibacter population and larger population of Competibacter at 32 °C did not deteriorate the phosphorus removal performance. A polyphosphate kinase 1 (ppk1)-based qPCR analysis on all studied EBPR processes detected only Accumulibacter clade IIF. The Accumulibacter population shown by 16S rRNA and ppk1 was not significantly different. This finding confirmed the existence of single clade IIF in the processes and the specificity of the clade IIF primer sets designed in this study. Habitat filtering related to temperature could have contributed to the presence of a unique clade. The clade IIF was hypothesised to be able to perform the EBPR activity at high temperatures. The clade's robustness most likely helps it to fit the high-temperature EBPR sludge best and allows it not only to outcompete other Accumulibacter clades but coexist with GAOs without compromising EBPR activity.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links