Displaying all 13 publications

Abstract:
Sort:
  1. Vairappan CS, Nagappan T, Palaniveloo K
    Nat Prod Commun, 2012 Feb;7(2):239-42.
    PMID: 22474969
    Essential oils obtained by hydrodistillation from the rhizomes of Etlingera pyramidosphaera (K. Schum.) R. M. Sm, E. megalocheilos (Griff.) A.D. Poulsen, comb. nov., E. coccinea (Blume) S. Sakai & Nagam, E. elatior (Jack) R. M. Sm, and E. brevilabrum (Valeton) R. M. Sm were analyzed by GCMS. The highest oil yield was obtained from E. pyramidosphaera (0.45%), followed by E. elatior (0.38%), E. coccinea (0.30%), E. brevilabrum (0.28%) and E. megalocheilos (0.25%). The major constituents of the essential oils were oxygenated monoterpenes, followed by sesquiterpenes, oxygenated sesquiterpenes, oxygenated diterpenes and diterpenes. The essential oils from E. pyramidosphaera and E. brevilabrum exhibited the best cytotoxicity against MCF 7 (LC50: 7.5 +/- 0.5 mg mL(-1)) and HL 60 (LC50: 5.0 mg mL(-1)), respectively. Strong inhibition was also observed for the essential oils of E. coccinea and E. megalocheilos against Staphylococcus aureus (MIC: 8.0 +/- 0.5 mg mL(-1), and 5.0 +/- 0.5 mg mL(-1)) and Streptococcus pyrogenes (MIC: 6.0 +/- 0.5 mg mL(-1) and 8.0 +/- 0.5 mg mL(-1)).
  2. Liu Y, Palaniveloo K, Alias SA, Sathiya Seelan JS
    Molecules, 2021 May 27;26(11).
    PMID: 34072177 DOI: 10.3390/molecules26113227
    Soft corals are widely distributed across the globe, especially in the Indo-Pacific region, with Sarcophyton being one of the most abundant genera. To date, there have been 50 species of identified Sarcophyton. These soft corals host a diverse range of marine fungi, which produce chemically diverse, bioactive secondary metabolites as part of their symbiotic nature with the soft coral hosts. The most prolific groups of compounds are terpenoids and indole alkaloids. Annually, there are more bio-active compounds being isolated and characterised. Thus, the importance of the metabolite compilation is very much important for future reference. This paper compiles the diversity of Sarcophyton species and metabolites produced by their associated marine fungi, as well as the bioactivity of these identified compounds. A total of 88 metabolites of structural diversity are highlighted, indicating the huge potential these symbiotic relationships hold for future research.
  3. Phan CS, Ng SY, Kim EA, Jeon YJ, Palaniveloo K, Vairappan CS
    Mar Drugs, 2015 May;13(5):3103-15.
    PMID: 25996100 DOI: 10.3390/md13053103
    Two new bicyclogermacrenes, capgermacrenes A (1) and B (2), were isolated with two known compounds, palustrol (3) and litseagermacrane (4), from a population of Bornean soft coral Capnella sp. The structures of these metabolites were elucidated based on spectroscopic data. Compound 1 was found to inhibit the accumulation of the LPS-induced pro-inflammatory IL-1b and NO production by down-regulating the expression of iNOS protein in RAW 264.7 macrophages.
  4. Aroyehun AQ, Palaniveloo K, Ghazali F, Rizman-Idid M, Abdul Razak S
    Molecules, 2019 Sep 10;24(18).
    PMID: 31510066 DOI: 10.3390/molecules24183298
    This study evaluated the effect of seasonal variation on the physicochemical, biochemical, and nutritional composition of Gracilaria manilaensis. Sampling was designed during the main monsoon seasons in Malaysia-the Southwest monsoon (SWM) and Northeast monsoon (NEM)-to understand the intraspecific variation (p < 0.05). Carbohydrates, protein, and dietary fiber were found to be higher in NEM-G. manilaensis, whereas a higher ash content was quantified in SWM-G. manilaensis. No significant differences were found in crude lipid and moisture content (p > 0.05). Vitamin B2 was calculated as (0.29 ± 0.06 mg 100 g-1) and (0.38 ± 0.06 mg 100 g-1) for the NEM and SWM samples, respectively (p < 0.05). The fatty acid profile showed the dominance of saturated fatty acids (SFAs)-palmitic acids, stearic acid, and myristic acid-while the mineral contents were found to be good sources of calcium (1750.97-4047.74 mg 100 g-1) and iron (1512.55-1346.05 mg 100 g-1). Tryptophan and lysine were recorded as the limiting essential amino acids (EAAs) in NEM G. manilaensis, while leucine and phenylalanine were found to be the limiting EAAs in the SWM samples. None of the extracts exhibited antibacterial properties against the screened strains. The study concluded that seasonal changes have a great effect on the biochemical composition of G. manilaensis.
  5. Tin HS, Palaniveloo K, Anilik J, Vickneswaran M, Tashiro Y, Vairappan CS, et al.
    Microb Ecol, 2018 Feb;75(2):459-467.
    PMID: 28779295 DOI: 10.1007/s00248-017-1043-6
    Decline in forest productivity due to forest conversion is defining the Bornean landscape. Responses of bacterial communities due to land-use changes are vital and could define our understanding of ecosystem functions. This study reports the changes in bacterial community structure in organic soil (0-5 cm; O-Horizon) and organic-mineral soil (5-15 cm; A-Horizon) across Maliau Basin Conservation Area old growth forest (MBOG), Fragment E logged forest (FELF) located in Kalabakan Forest Reserve to Benta Wawasan oil palm plantation (BWOP) using two-step PCR amplicon analysis of bacteria DNA on Illumina Miseq next generation sequencing. A total of 30 soil samples yielded 893,752-OTU reads at ≥97% similarity from 5,446,512 good quality sequences. Soil from BWOP plantation showed highest unshared OTUs for organic (49.2%) and organic-mineral (50.9%) soil. MBOG soil showed a drop in unshared OTUs between organic (48.6%) and organic-mineral (33.9%). At phylum level, Proteobacteria dominated MBOG but shifted to Actinobacteria in logged and plantation soil. Present findings also indicated that only FELF exhibited change in bacterial communities along the soil depth, moving from the organic to the organic-mineral layer. Both layers of BWOP plantation soils deviated from other forests' soil in β-diversity analysis. To our knowledge, this is the first report on transitions of bacterial community structures with different soil horizons in the tropical rainforest including Borneo, Sabah. Borneo tropical soils form a large reservoir for soil bacteria and future exploration is needed for fully understanding the diversity structure and their bacterial functional properties.
  6. Lee LC, Rizman-Idid M, Alias SA, Palaniveloo K, Gu H
    Biodivers Data J, 2022;10:e81533.
    PMID: 36761577 DOI: 10.3897/BDJ.10.e81533
    Fungal species members of the genus Neodevriesia have been known to occur in marine environments. This report documents the first record of the fungal genus Neodevriesia isolated from scleractinian corals. Three isolated strains were identified from a phylogenetic tree that was constructed, based on the nuclear ribosomal internal transcribed spacer and partial large subunit (ITS + LSU) DNA sequences. Isolates were closely related to both Neodevriesiashakazului (Crous) Crous and Neodevriesiaqueenslandica (Crous, R.G. Shivas & McTaggart) Crous, but formed a distinct clade with strong support that implies a potentially genetic variant of a known species or even a novel species. These findings contribute to the fungal diversity checklist in Malaysia and knowledge about marine fungi associated with scleractinian corals.
  7. Khodzori FA, Mazlan NB, Chong WS, Ong KH, Palaniveloo K, Shah MD
    Biomolecules, 2023 Mar 06;13(3).
    PMID: 36979419 DOI: 10.3390/biom13030484
    Sponges are aquatic, spineless organisms that belong to the phylum Porifera. They come in three primary classes: Hexactinellidae, Demospongiae, and Calcarea. The Demospongiae class is the most dominant, making up over 90% of sponge species. One of the most widely studied genera within the Demospongiae class is Xestospongia, which is found across Southeast Asian waters. This genus is of particular interest due to the production of numerous primary and secondary metabolites with a wide range of biological potentials. In the current review, the antioxidant, anticancer, anti-inflammatory, antibacterial, antiviral, antiparasitic, and cytotoxic properties of metabolites from several varieties of Southeast Asian Xestospongia spp. were discussed. A total of 40 metabolites of various natures, including alkaloids, fatty acids, steroids, and quinones, were highlighted in X. bergquistia, X. testudinaria, X. muta, X. exigua, X. ashmorica and X. vansoesti. The review aimed to display the bioactivity of Xestospongia metabolites and their potential for use in the pharmaceutical sector. Further research is needed to fully understand their bioactivities.
  8. Palaniveloo K, Yee-Yinn L, Jia-Qi L, Chelliah A, Sze-Looi S, Nagappan T, et al.
    Foods, 2021 Aug 20;10(8).
    PMID: 34441709 DOI: 10.3390/foods10081932
    Seaweeds are an important ingredient of functional foods recommended for daily food, due to their unique compositions and nutritional value. Padina tetrastromatica is a brown edible seaweed that is commonly found along the coastal regions of Peninsular Malaysia and consumed as food by some coastal communities. This study investigates the nutritional and antihyperglycaemic potential of P. tetrastromatica extracts, which is generally accepted as an important functional food. In our methodology, we induced diabetes intraperitoneally in experimental animals with a dose of 65 mg kg-1 body weight of streptozotocin. Oral treatment with 200 and 400 mg kg-1 of P. tetrastromatica ethanolic and ethyl acetate extracts were initiated, respectively, to experimental rats once daily for 18 days. Metformin was used as the positive control. Biochemical estimations and histopathological analysis were included in this study. Treatment with P. tetrastromatica extracts significantly lowered the plasma glucose levels in Streptozotocin-induced diabetic rats. In addition, P. tetrastromatica extract treatment also showed a significant reduction in serum alanine transaminase levels. However, no significant changes were observed in serum aspartate transaminase levels. The ethyl acetate extract of P. tetrastromatica at 400 mg kg-1 dose shows some nephroprotective effect, which is observed from the significant increase in the plasma albumin levels. Histopathological evaluation revealed no marked morphological changes in tissues of the isolated organs of the ethyl acetate extract-treated group, revealing the safe nature of P. tetrastromatica.
  9. Palaniveloo K, Ong KH, Satriawan H, Abdul Razak S, Suciati S, Hung HY, et al.
    3 Biotech, 2023 Oct;13(10):337.
    PMID: 37701628 DOI: 10.1007/s13205-023-03725-6
    Alzheimer's disease (AD) is a neurodegenerative disease that causes deterioration in intelligence and psychological activities. Yet, till today, no cure is available for AD. The marine environment is an important sink of bioactive compounds with neuroprotective potential with reduced adverse effects. Recently, we collected the red algae Laurencia snackeyi from Terumbu Island, Malaysia which is known to be rich in halogenated metabolites making it the most sought-after red algae for pharmaceutical studies. The red alga was identified based on basic morphological characteristics, microscopic observation and chemical data from literature. The purplish-brown algae was confirmed a new record. In Malaysia, this species is poorly documented in Peninsular Malaysia as compared to its eastern continent Borneo. Thus, this study intended to investigate the diversity of secondary metabolites present in the alga and its cholinesterase inhibiting potential for AD. The extract inhibited both acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) with IC50 values of  14.45 ± 0.34 μg mL-1 and 39.59 ± 0.24 μg mL-1, respectively. Subsequently, we isolated the synderanes, palisadin A (1), aplysistatin (2) and 5-acetoxypalisadin B (3) that was not exhibit potential. Mass spectrometry analysis detected at total of 33 additional metabolites. The computational aided molecular docking using the AChE and BChE receptors on all metabolites shortlisted 5,8,11,14-eicosatetraynoic acid (31) and 15-hydroxy-1-[2-(hydroxymethyl)-1-piperidinyl]prost-13-ene-1,9-dione (42) with best inhibitory properties, respectively with the lowest optimal combination of S-score and RMSD values. This study shows the unexplored potential of marine natural resources, however, obtaining sufficient biomass for detailed investigation is an uphill task. Regardless, there is a lot of potential for future prospects with a wide range of marine natural resources to study and the incorporation of synthetic chemistry, in vivo studies in experimental design.

    SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s13205-023-03725-6.

  10. Venmathi Maran BA, Palaniveloo K, Mahendran T, Chellappan DK, Tan JK, Yong YS, et al.
    Molecules, 2023 Aug 15;28(16).
    PMID: 37630329 DOI: 10.3390/molecules28166075
    Vibriosis and parasitic leech infestations cause the death of various farmed fish, such as groupers, hybrid groupers, sea bass, etc., in Malaysia and other Southeast Asian countries. In the absence of natural control agents, aquaculture operators rely on toxic chemicals to control Vibrio infections and parasitic leeches, which can have a negative impact on the environment and health. In the present study, we investigated the antivibrio and antiparasitic activities of the aqueous extract of giant sword fern (GSF) (Nephrolepis biserrata, Nephrolepidaceae, locally known as "Paku Pedang") against four Vibrio spp. and the parasitic leech Zeylanicobdella arugamensis, as well as its metabolic composition using the ultra-high-performance liquid chromatography-high-resolution mass spectrometry system (UHPLC-HRMS). The data show that the aqueous extract of GSF at a concentration of 100 mg/mL exhibits potent bactericidal activity against V. parahaemolyticus with a zone of inhibition of 19.5 mm. In addition, the extract showed dose-dependent activity against leeches, resulting in the complete killing of the parasitic leeches within a short period of 11-43 min when tested at concentrations ranging from 100 to 25 mg/mL. The UHPLC-HRMS analysis detected 118 metabolites in the aqueous extract of GSF. Flavonoids were the primary metabolites, followed by phenolic, aromatic, fatty acyl, terpenoid, vitamin and steroidal compounds. Notably, several of these metabolites possess antibacterial and antiparasitic properties, including cinnamaldehyde, cinnamic acid, apigenin, quercetin, cynaroside, luteolin, naringenin, wogonin, 6-gingerol, nicotinamide, abscisic acid, daidzein, salvianolic acid B, etc. Overall, our study shows the significant antibacterial and antiparasitic potential of the GSF aqueous extract, which demonstrates the presence of valuable secondary metabolites. Consequently, the aqueous extract is a promising natural alternative for the effective control of Vibrio infections and the treatment of parasitic leeches in aquaculture systems.
  11. Qudus B Aroyehun A, Abdul Razak S, Palaniveloo K, Nagappan T, Suraiza Nabila Rahmah N, Wee Jin G, et al.
    Foods, 2020 Sep 18;9(9).
    PMID: 32961907 DOI: 10.3390/foods9091313
    Caulerpa racemosa (Forsskal) J. Agardh is a green seaweed used as food and folk medicine since ancient times in the Indo-Pacific region, particularly in southeast Asia. In this study, the proximate nutrient composition, phytochemical, anti-oxidant and anti-diabetic properties of sea grape C. racemosa collected from culture fishponds in Johor, Malaysia were analysed. The contents (dry weight basis) of carbohydrate, crude protein, crude lipids, ash and caloric value obtained were 33.42 ± 1.34%, 20.27 ± 0.14%, 4.20 ± 0.32%, 28.25 ± 0.27% and 2544.67 ± 7.04 cal g-1, respectively. The amino acid score (AAs) and biological protein value (213.43 mg g-1) indicated that C. racemosa presented a better protein quality. The most abundant fatty acids were C16:0 (palmitic acid: 63.27%), followed by C18:1 (oleic acid: 5.80%), and C18:2 ῳ6 (linoleic acid: 5.33%). The analysis of the ash content indicated that essential minerals and trace elements, such as Ca, Fe, and Mn, were present in the seaweed. The total phenolic content (TPC) and total flavonoid content (TFC) observed in the ethyl acetate extract were 17.88 ± 0.78 mg GAE g-1 and 59.43 ± 2.45 mg QE g-1, respectively. The ethyl acetate extract of C. racemosa demonstrated notable anti-diabetic activity in diabetic induced rats. The low (100 mg kg-1) and high (200 mg kg-1) doses of cultivated C. racemosa extract exhibited a significant decrease (p < 0.05) in blood glucose levels while preventing weight loss, reducing plasma AST, ALT levels as a sign of hepatoprotective effect and recording albumin levels similar to positive control in diabetic induced rats. The results support the usefulness of cultivated C. racemosa as a potential functional food.
  12. Chellappan DK, Chellian J, Rahmah NSN, Gan WJ, Banerjee P, Sanyal S, et al.
    Diabetes Metab Syndr Obes, 2023;16:2187-2223.
    PMID: 37521747 DOI: 10.2147/DMSO.S390741
    Diabetes mellitus (DM) is a chronic metabolic disorder recognized as a major health problem globally. A defective insulin activity contributes to the prevalence and expansion of DM. Treatment of DM is often hampered by limited options of conventional therapies and adverse effects associated with existing procedures. This has led to a spike in the exploration for potential therapeutic agents from various natural resources for clinical applications. The marine environment is a huge store of unexplored diversity of chemicals produced by a multitude of organisms. To date, marine microorganisms, microalgae, macroalgae, corals, sponges, and fishes have been evaluated for their anti-diabetic properties. The structural diversity of bioactive metabolites discovered has shown promising hypoglycaemic potential through in vitro and in vivo screenings via various mechanisms of action, such as PTP1B, α-glucosidase, α-amylase, β-glucosidase, and aldose reductase inhibition as well as PPAR alpha/gamma dual agonists activities. On the other hand, hypoglycaemic effect is also shown to be exerted through the balance of antioxidants and free radicals. This review highlights marine-derived chemicals with hypoglycaemic effects and their respective mechanisms of action in the management of DM in humans.
  13. Alnuqaydan AM, Almutary AG, Sukamaran A, Yang BTW, Lee XT, Lim WX, et al.
    AAPS PharmSciTech, 2021 Jun 08;22(5):173.
    PMID: 34105037 DOI: 10.1208/s12249-021-02062-2
    Middle East respiratory syndrome (MERS) is a lethal respiratory disease with its first case reported back in 2012 (Jeddah, Saudi Arabia). It is a novel, single-stranded, positive-sense RNA beta coronavirus (MERS-CoV) that was isolated from a patient who died from a severe respiratory illness. Later, it was found that this patient was infected with MERS. MERS is endemic to countries in the Middle East regions, such as Saudi Arabia, Jordan, Qatar, Oman, Kuwait and the United Arab Emirates. It has been reported that the MERS virus originated from bats and dromedary camels, the natural hosts of MERS-CoV. The transmission of the virus to humans has been thought to be either direct or indirect. Few camel-to-human transmissions were reported earlier. However, the mode of transmission of how the virus affects humans remains unanswered. Moreover, outbreaks in either family-based or hospital-based settings were observed with high mortality rates, especially in individuals who did not receive proper management or those with underlying comorbidities, such as diabetes and renal failure. Since then, there have been numerous reports hypothesising complications in fatal cases of MERS. Over the years, various diagnostic methods, treatment strategies and preventive measures have been strategised in containing the MERS infection. Evidence from multiple sources implicated that no treatment options and vaccines have been developed in specific, for the direct management of MERS-CoV infection. Nevertheless, there are supportive measures outlined in response to symptom-related management. Health authorities should stress more on infection and prevention control measures, to ensure that MERS remains as a low-level threat to public health.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links