Displaying all 10 publications

Abstract:
Sort:
  1. Kok KY, Rajendran P
    PLoS One, 2016;11(3):e0150558.
    PMID: 26943630 DOI: 10.1371/journal.pone.0150558
    The differential evolution algorithm has been widely applied on unmanned aerial vehicle (UAV) path planning. At present, four random tuning parameters exist for differential evolution algorithm, namely, population size, differential weight, crossover, and generation number. These tuning parameters are required, together with user setting on path and computational cost weightage. However, the optimum settings of these tuning parameters vary according to application. Instead of trial and error, this paper presents an optimization method of differential evolution algorithm for tuning the parameters of UAV path planning. The parameters that this research focuses on are population size, differential weight, crossover, and generation number. The developed algorithm enables the user to simply define the weightage desired between the path and computational cost to converge with the minimum generation required based on user requirement. In conclusion, the proposed optimization of tuning parameters in differential evolution algorithm for UAV path planning expedites and improves the final output path and computational cost.
  2. Rajendran P, Bhat S, Anand M
    Contemp Clin Dent, 2020 08 07;11(2):190-194.
    PMID: 33110336 DOI: 10.4103/ccd.ccd_354_19
    An unavoidable consequence of periodontal flap procedure is gingival recession (GR). Achieving both pocket depth reduction and GR coverage remains a challenge to periodontists. The present case report provides a new innovative technique that will enable all clinicians to achieve pocket depth reduction as well as recession coverage in esthetic zone. The clinical parameters that were assessed at baseline, 1 month, 3 months, and 6 months are probing depth (PD), clinical attachment level (CAL), height of GR (HGR), and gingival biotype. The patient reported with a faulty post and core with crown in relation to maxillary right central incisor with a PD of 8 mm and HGR of 2.5 mm. Following replacement of the crown with respect to the tooth, semilunar incision was made and flap was reflected to visualize the underlying bone. This technique does not involve the interdental papilla at the same time allows the coronal advancement of the flap. A chorion membrane was placed to accelerate the healing as well to provide stable clinical outcome. The patient was evaluated at 10 days, 1 month, 3 months, and 6 months. There was a considerable reduction in PD, GR, and thus gain in CAL. The results remained stable over a period of 6 months.
  3. Yew KL, Ooi PS, Rajendran P, Razali F, Anum A, Yeo J, et al.
    Med J Malaysia, 2014 Oct;69(5):224-6.
    PMID: 25638236 MyJurnal
    No abstract available.
  4. Yew KL, Go CS, Razali F, Rajendran P, Ooi PS, Anum A
    Eur Rev Med Pharmacol Sci, 2014;18(17):2403-4.
    PMID: 25268081
  5. Lim ZF, Rajendran P, Musa MY, Lee CF
    Vis Comput Ind Biomed Art, 2021 May 20;4(1):14.
    PMID: 34014417 DOI: 10.1186/s42492-021-00080-2
    A numerical simulation of a patient's nasal airflow was developed via computational fluid dynamics. Accordingly, computerized tomography scans of a patient with septal deviation and allergic rhinitis were obtained. The three-dimensional (3D) nasal model was designed using InVesalius 3.0, which was then imported to (computer aided 3D interactive application) CATIA V5 for modification, and finally to analysis system (ANSYS) flow oriented logistics upgrade for enterprise networks (FLUENT) to obtain the numerical solution. The velocity contours of the cross-sectional area were analyzed on four main surfaces: the vestibule, nasal valve, middle turbinate, and nasopharynx. The pressure and velocity characteristics were assessed at both laminar and turbulent mass flow rates for both the standardized and the patient's model nasal cavity. The developed model of the patient is approximately half the size of the standardized model; hence, its velocity was approximately two times more than that of the standardized model.
  6. Rengarajan T, Rajendran P, Nandakumar N, Lokeshkumar B, Balasubramanian MP
    J Environ Pathol Toxicol Oncol, 2015;34(4):287-98.
    PMID: 26756422
    The aim of the study was to evaluate the protective activity of D-Pinitol against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. The animals were divided into six groups, with each group consisting of six animals. Group I animals served as normal controls and received olive oil vehicle (1.0 ml/kg body weight intraperitoneally). Group II rats served as CCl4 controls, which received 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks. Group III rats were treated with 30% CCl4 suspended in olive oil (3.0 ml/kg body weight intraperitoneally) twice a week for 4 weeks, followed by D-Pinitol (100 mg/kg body weight) given for 28 days intragastrically. Group IV rats received D-Pinitol alone at a concentration of 100 mg/kg body weight for 28 days intragastrically. At the end of the experimental period, serum marker enzymes and lipid peroxidation (LPO) levels were significantly increased in group II animals. On the other hand, D-Pinitol treatment significantly decreased marker enzymes and LPO levels and increased the antioxidant level. CYP expression was also investigated. Therefore, the present study revealed that D-Pinitol acts as a protective agent by decreasing metabolic activation of xenobiotics through its antioxidant nature.
  7. Thevi Rajendran P, Krishnapillai V, Tamanang S, Kumari Chelliah K
    Malays J Med Sci, 2012 Jan;19(1):52-9.
    PMID: 22977375 MyJurnal
    Digital mammography is slowly replacing screen film mammography. In digital mammography, 2 methods are available in acquiring images: digital storage phosphor plate and full-field digital mammography. The aim of this study was to compare the image quality acquired from the 2 methods of digital mammography in the detection of breast cancer.
  8. Rajendran P, Alzahrani AM, Hanieh HN, Kumar SA, Ben Ammar R, Rengarajan T, et al.
    J Cell Physiol, 2019 12;234(12):21485-21492.
    PMID: 31144309 DOI: 10.1002/jcp.28895
    Senescence and autophagy play important roles in homeostasis. Cellular senescence and autophagy commonly cause several degenerative processes, including oxidative stress, DNA damage, telomere shortening, and oncogenic stress; hence, both events are known to be interrelated. Autophagy is well known for its disruptive effect on human diseases, and it is currently proposed to have a direct effect on triggering senescence and quiescence. However, it is yet to be proven whether autophagy has a positive or negative impact on senescence. It is known that elevated levels of autophagy induce cell death, whereas inadequate autophagy can trigger cellular senescence. Both have important roles in human diseases such as aging, renal degeneration, neurodegenerative disorders, and cancer. Therefore, this review aims to highlight the relevance of senescence and autophagy in selected human ailments through a summary of recent findings on the connection and effects of autophagy and senescence in these diseases.
  9. Rengarajan T, Nandakumar N, Rajendran P, Ganesh MK, Balasubramanian MP, Nishigaki I
    J Physiol Biochem, 2015 Jun;71(2):191-204.
    PMID: 25827943 DOI: 10.1007/s13105-015-0397-9
    Breast cancer is the most prevalent malignant neoplasm in the world, and chemoprevention through dietary intervention strategy is an emerging option to reduce the incidence. D-pinitol (DP), a major component of soya bean, possesses attractive biological actions. We have investigated whether D-pinitol have an effect on tumor growth in vivo against 7,12-dimethylbenz(a)anthracene (DMBA)-initiated rat mammary carcinogenesis and investigated its mechanism of action. Tumors were induced in Sprague-Dawley (SD) rats by a gastric dose of 20 mg/kg DMBA, and after 13 weeks of induction period, the rats were orally administered with D-pinitol for 45 days. At the end of the assay, animals in carcinogen control group prompted a tumor incidence of 100 % and developed a tumor volume of 8.35 ± 0.56, which was significantly reduced to 5.74 ± 0.32 for the animals treated with D-pinitol. The D-pinitol treatment not only decreased the tumor volume but also further examination revealed that tumors from animals that received D-pinitol reduced nuclear factor kappa B (NF-κB) activation which in turn results in modulation of its downstreaming p53 and proteins of caspase-3 family. Bcl-2 expression and caspase-3 activation were also decreased after D-pinitol supplementation leading to induction of apoptosis and finally cell death. Furthermore, the status of the inflammatory cytokines such as tumor necrosis factor-α (TNF-α), interleukin (IL)-2, IL-6, and tumor markers, lipid profile, and hormones was also significantly declined up on D-pinitol administration. Thus, it reveals the collective involvement of the above-mentioned parameters along with NF-κB signaling through which D-pinitol induces apoptosis and subsequently suppresses breast cancer during DMBA-induced rat breast carcinogenesis.
  10. Jayakumar SS, Subramaniam IP, Stanislaus Arputharaj B, Solaiappan SK, Rajendran P, Lee IE, et al.
    Sci Rep, 2024 Mar 15;14(1):6330.
    PMID: 38491057 DOI: 10.1038/s41598-024-54174-x
    Compact multi-rotor unmanned aerial vehicles (UAVs) can be operated in many challenging environmental conditions. In case the UAV requires certain considerations in designing like lightweight, efficient propulsion system and others depending upon the application, the hybrid UAV comes into play when the usual UAV types cannot be sufficient to meet the requirements. The propulsion system for the UAV was selected to be coaxial rotors because it has a high thrust-to-weight ratio and to increase the efficiency of the propulsion system, a unique propeller was proposed to achieve higher thrust. The proposed propeller was uniquely designed by analyzing various airfoil sections under different Reynolds's number using X-Foil tool to obtain the optimum airfoil section for the propellers. Since the design with duct increases efficiency, the Hybrid UAV presented in this paper has the modified novel convergent-divergent (C-D)-based duct which is a simplified model of a conventional C-D duct. The yawing and rolling maneuverings of the UAV could be achieved by the thrust vectoring method so that the design is simpler from a structural and mechanical perspective. The use of UAVs has risen in recent years, especially compact UAVs, which can be applied for applications like surveillance, detection and inspection, and monitoring in a narrow region of space. The design of the UAV is modeled in CATIA, and its further performance enactment factors are picked from advanced computational simulations relayed bottom-up approach. The predominant computational fluid dynamics (CFD) and fluid structure interaction (FSI) investigations are imposed and optimized through Computational Analyses using Ansys Workbench 17.2, which includes analysis of structural behaviour of various alloys, CFRP and GFRP based composite materials. From the structural analysis Titanium alloy came out to be the best performing materials among the others by having lower total deformation and other parameters such as normal and equivalent stress. The dynamics control response is obtained using MATLAB Simulink. The validations are carried out on the propeller using a thrust stand for CFD and on the duct through a high-jet facility for structural outcomes to meet the expected outcome.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links