MATERIALS AND METHODS: Systematic reviews with meta-analysis were included for the quality assessment using AMSTAR (assessment of multiple SRs) and Glenny et al. checklist by two independent teams. The search was limited to the Medline database archival (from January 1980 to December 2018).
RESULTS: The primary search identified 1,507 related articles. After activation of different filters, abstracts screening, and cross-referencing, finally, a total of six studies were assessed to make the overview up-to-date.
CONCLUSION: The articles scored 8 to 11 with AMSTAR and 7 to 13 with the Glenny et al. checklist. None of the published reviews received maximum scores. The methodology and heterogeneity are essential factors to assess the quality of the published literature.
CLINICAL SIGNIFICANCE: None of the included meta-analysis was registered or published protocol with Prospero or Cochrane before publication for better validity of the studies. The authors are advised to follow reporting criteria so that in the future it is possible to provide the standards of care for TMJA with the highest quality of evidence.
DISCUSSION: Although crucial guidance has been released on how to maintain TB and HIV services during the pandemic, it is acknowledged that what was considered normal service pre-pandemic needs to improve to ensure that we rebuild person-centred, inclusive and quality healthcare services. The threat that the pandemic may reverse gains in the response to TB and HIV may be turned into an opportunity by pivoting to using proven differentiated service delivery approaches and innovative technologies that can be used to maintain care during the pandemic and accelerate improved service delivery in the long term. Models of care should be convenient, supportive and sufficiently differentiated to avoid burdensome clinic visits for medication pick-ups or directly observed treatments. Additionally, the pandemic has highlighted the chronic and short-sighted lack of investment in health systems and the need to prioritize research and development to close the gaps in TB diagnosis, treatment and prevention, especially for children and people with HIV. Most importantly, TB-affected communities and civil society must be supported to lead the planning, implementation and monitoring of TB and HIV services, especially in the time of COVID-19 where services have been disrupted, and to report on legal, policy and gender-related barriers to access experienced by affected people. This will help to ensure that TB services are held accountable by affected communities for delivering equitable access to quality, affordable and non-discriminatory services during and beyond the pandemic.
CONCLUSIONS: Successfully reaching the related targets of ending TB and AIDS as public health threats by 2030 requires rebuilding of stronger, more inclusive health systems by advancing equitable access to quality TB services, including for people with HIV, both during and after the COVID-19 pandemic. Moreover, services must be rights-based, community-led and community-based, to ensure that no one is left behind.
DISCUSSION: We present a summary of the current and novel TPT regimens, including current evidence of use with antiretroviral regimens (ART). We review challenges and opportunities to scale-up TB prevention within HIV programmes, including the use of differentiated care approaches and demand creation for effective TB/HIV services delivery. TB preventive vaccines and diagnostics, including optimal algorithms, while important topics, are outside of the focus of this commentary.
CONCLUSIONS: A number of new tools and strategies to make TPT a standard of care in HIV programmes have become available. The new TPT regimens are safe and effective and can be used with current ART, with attention being paid to potential drug-drug interactions between rifamycins and some classes of antiretrovirals. More research and development is needed to optimize TPT for small children, pregnant women and drug-resistant TB (DR-TB). Effective programmatic scale-up can be supported through context-adapted demand creation strategies and the inclusion of TPT in client-centred services, such as differentiated service delivery (DSD) models. Robust collaboration between the HIV and TB programmes represents a unique opportunity to ensure that TB, a preventable and curable condition, is no longer the number one cause of death in PLHIV.
Materials and methods: RaFTA is a prospective, observational study in Asian intensive care unit (ICU) patients focusing on fluid therapy and related outcomes. Logistic regression was performed to identify risk factors for increased 90-day mortality and acute kidney injury (AKI).
Results: Twenty-four study centers joined the RaFTA registry and collected 3,187 patient data sets from November 2011 to September 2012. A follow-up was done 90 days after ICU admission. For 90-day mortality, significant risk factors in the overall population were sepsis at admission (OR 2.185 [1.799; 2.654], p < 0.001), cumulative fluid balance (OR 1.032 [1.018; 1.047], p < 0.001), and the use of vasopressors (OR 3.409 [2.694; 4.312], p < 0.001). The use of colloids was associated with a reduced risk of 90-day mortality (OR 0.655 [0.478; 0.900], p = 0.009). The initial colloid dose was not associated with an increased risk for AKI (OR 1.094 [0.754; 1.588], p = 0.635).
Conclusion: RaFTA adds the important finding that colloid use was not associated with increased 90-day mortality or AKI after adjustment for baseline patient condition.
Clinical significance: Early resuscitation with colloids showed potential mortality benefit in the present analysis. Elucidating these findings may be an approach for future research.
How to cite this article: Jacob M, Sahu S, Singh YP, Mehta Y, Yang K-Y, Kuo S-W, et al. A Prospective Observational Study of Rational Fluid Therapy in Asian Intensive Care Units: Another Puzzle Piece in Fluid Therapy. Indian J Crit Care Med 2020;24(11):1028-1036.
METHODS: From January 1, 2014, to February 12, 2022, we conducted a prospective cohort study. To estimate CAUTI incidence, the number of UC days was the denominator, and CAUTI was the numerator. To estimate CAUTI RFs, we analyzed 11 variables using multiple logistic regression.
RESULTS: 84,920 patients hospitalized for 499,272 patient days acquired 869 CAUTIs. The pooled CAUTI rate per 1,000 UC-days was 3.08; for those using suprapubic-catheters (4.11); indwelling-catheters (2.65); trauma-ICU (10.55), neurologic-ICU (7.17), neurosurgical-ICU (5.28); in lower-middle-income countries (3.05); in upper-middle-income countries (1.71); at public-hospitals (5.98), at private-hospitals (3.09), at teaching-hospitals (2.04). The following variables were identified as CAUTI RFs: Age (adjusted odds ratio [aOR] = 1.01; 95% CI = 1.01-1.02; P
METHODS: We implemented a multidimensional approach, incorporating an 11-element bundle, education, surveillance of CLABSI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CLABSI rates and clinical outcomes, and performance feedback in 316 ICUs across 30 low- and middle-income countries. Our dependent variables were CLABSI per 1,000-CL-days and in-ICU all-cause mortality rates. These variables were measured at baseline and during the intervention, specifically during the second month, third month, 4 to 16 months, and 17 to 29 months. Comparisons were conducted using a two-sample t test. To explore the exposure-outcome relationship, we used a generalized linear mixed model with a Poisson distribution to model the number of CLABSIs.
RESULTS: During 1,837,750 patient-days, 283,087 patients, used 1,218,882 CL-days. CLABSI per 1,000 CL-days rates decreased from 15.34 at the baseline period to 7.97 in the 2nd month (relative risk (RR) = 0.52; 95% confidence interval [CI] = 0.48-0.56; P
METHODS: We implemented a strategy involving a 9-element bundle, education, surveillance of CAUTI rates and clinical outcomes, monitoring compliance with bundle components, feedback of CAUTI rates and performance feedback. This was executed in 299 ICUs across 32 low- and middle-income countries. The dependent variable was CAUTI per 1,000 UC days, assessed at baseline and throughout the intervention, in the second month, third month, 4 to 15 months, 16 to 27 months, and 28 to 39 months. Comparisons were made using a 2-sample t test, and the exposure-outcome relationship was explored using a generalized linear mixed model with a Poisson distribution.
RESULTS: Over the course of 978,364 patient days, 150,258 patients utilized 652,053 UC-days. The rates of CAUTI per 1,000 UC days were measured. The rates decreased from 14.89 during the baseline period to 5.51 in the second month (risk ratio [RR] = 0.37; 95% confidence interval [CI] = 0.34-0.39; P
METHODS: Prospective, surveillance study on peripheral venous catheter-associated bloodstream infections conducted from 1 September 2013 to 31 May 2019 in 262 intensive care units, members of the International Nosocomial Infection Control Consortium, from 78 hospitals in 32 cities of 8 countries in the South-East Asia Region: China, India, Malaysia, Mongolia, Nepal, Philippines, Thailand, and Vietnam. For this research, we applied definition and criteria of the CDC NHSN, methodology of the INICC, and software named INICC Surveillance Online System.
RESULTS: We followed 83,295 intensive care unit patients for 369,371 bed-days and 376,492 peripheral venous catheter-days. We identified 999 peripheral venous catheter-associated bloodstream infections, amounting to a rate of 2.65/1000 peripheral venous catheter-days. Mortality in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.53% and 12.21% in patients with peripheral venous catheter-associated bloodstream infections. The mean length of stay in patients with peripheral venous catheter but without peripheral venous catheter-associated bloodstream infections was 4.40 days and 7.11 days in patients with peripheral venous catheter and peripheral venous catheter-associated bloodstream infections. The microorganism profile showed 67.1% were Gram-negative bacteria: Escherichia coli (22.9%), Klebsiella spp (10.7%), Pseudomonas aeruginosa (5.3%), Enterobacter spp. (4.5%), and others (23.7%). The predominant Gram-positive bacteria were Staphylococcus aureus (11.4%).
CONCLUSIONS: Infection prevention programs must be implemented to reduce the incidence of peripheral venous catheter-associated bloodstream infections.
METHODS: Prospective intensive care unit patient data collected via International Nosocomial Infection Control Consortium Surveillance Online System. Centers for Disease Control and Prevention/National Health Care Safety Network definitions applied for device-associated health care-associated infections (DA-HAI).
RESULTS: We gathered data from 204,770 patients, 1,480,620 patient days, 936,976 central line (CL)-days, 637,850 mechanical ventilators (MV)-days, and 1,005,589 urinary catheter (UC)-days. Our results showed 4,270 CL-associated bloodstream infections, 7,635 ventilator-associated pneumonia, and 3,005 UC-associated urinary tract infections. The combined rates of DA-HAIs were 7.28%, and 10.07 DA-HAIs per 1,000 patient days. CL-associated bloodstream infections occurred at 4.55 per 1,000 CL-days, ventilator-associated pneumonias at 11.96 per 1,000 MV-days, and UC-associated urinary tract infections at 2.91 per 1,000 UC days. In terms of resistance, Pseudomonas aeruginosa showed 50.73% resistance to imipenem, 44.99% to ceftazidime, 37.95% to ciprofloxacin, and 34.05% to amikacin. Meanwhile, Klebsiella spp had resistance rates of 48.29% to imipenem, 72.03% to ceftazidime, 61.78% to ciprofloxacin, and 40.32% to amikacin. Coagulase-negative Staphylococci and Staphylococcus aureus displayed oxacillin resistance in 81.33% and 53.83% of cases, respectively.
CONCLUSIONS: The high rates of DA-HAI and bacterial resistance emphasize the ongoing need for continued efforts to control them.
DESIGN: A prospective cohort study.
SETTING: The study was conducted across 623 ICUs of 224 hospitals in 114 cities in 37 African, Asian, Eastern European, Latin American, and Middle Eastern countries.
PARTICIPANTS: The study included 169,036 patients, hospitalized for 1,166,593 patient days.
METHODS: Data collection took place from January 1, 2014, to February 12, 2022. We identified CAUTI rates per 1,000 UC days and UC device utilization (DU) ratios stratified by country, by ICU type, by facility ownership type, by World Bank country classification by income level, and by UC type. To estimate CAUTI risk factors, we analyzed 11 variables using multiple logistic regression.
RESULTS: Participant patients acquired 2,010 CAUTIs. The pooled CAUTI rate was 2.83 per 1,000 UC days. The highest CAUTI rate was associated with the use of suprapubic catheters (3.93 CAUTIs per 1,000 UC days); with patients hospitalized in Eastern Europe (14.03) and in Asia (6.28); with patients hospitalized in trauma (7.97), neurologic (6.28), and neurosurgical ICUs (4.95); with patients hospitalized in lower-middle-income countries (3.05); and with patients in public hospitals (5.89).The following variables were independently associated with CAUTI: Age (adjusted odds ratio [aOR], 1.01; P < .0001), female sex (aOR, 1.39; P < .0001), length of stay (LOS) before CAUTI-acquisition (aOR, 1.05; P < .0001), UC DU ratio (aOR, 1.09; P < .0001), public facilities (aOR, 2.24; P < .0001), and neurologic ICUs (aOR, 11.49; P < .0001).
CONCLUSIONS: CAUTI rates are higher in patients with suprapubic catheters, in middle-income countries, in public hospitals, in trauma and neurologic ICUs, and in Eastern European and Asian facilities.Based on findings regarding risk factors for CAUTI, focus on reducing LOS and UC utilization is warranted, as well as implementing evidence-based CAUTI-prevention recommendations.
METHODS: We implemented a multidimensional approach and an 8-component bundle in 374 ICUs across 35 low and middle-income countries (LMICs) from Latin-America, Asia, Eastern-Europe, and the Middle-East, to reduce VAP rates in ICUs. The VAP rate per 1000 mechanical ventilator (MV)-days was measured at baseline and during intervention at the 2nd month, 3rd month, 4-15 month, 16-27 month, and 28-39 month periods.
RESULTS: 174,987 patients, during 1,201,592 patient-days, used 463,592 MV-days. VAP per 1000 MV-days rates decreased from 28.46 at baseline to 17.58 at the 2nd month (RR = 0.61; 95% CI = 0.58-0.65; P