Methods: The cytotoxicity of the Ligno TG-K against human breast (MCF7), prostate (PC3) and lung (A549) adenocarcinoma cell lines was evaluated using MTT cytotoxicity assay. The cytotoxic mechanisms of the active high molecular weight proteins (HMWp) fraction were investigated through detection of caspases activity and apoptotic-related proteins expression by Western blotting. The in vivo antitumor activity of the isolated HMWp was examined using MCF7 mouse xenograft model. Shotgun LC-MS/MS analysis was performed to identify the proteins in the HMWp.
Results and Discussion: Cold water extract of the sclerotia inhibited proliferation of MCF7, A549 and PC3 cells with IC50 ranged from 28.9 to 95.0 µg/mL. Bioassay guided fractionation of the extract revealed that HMWp exhibited selective cytotoxicity against MCF7 cells via induction of cellular apoptosis by the activation of extrinsic and intrinsic signaling pathways. HMWp activated expression of caspase-8 and -9 enzymes, and pro-apoptotic Bax protein whilst inhibiting expression of tumor survivor protein, Bcl-2. HMWp induced tumor-cell apoptosis and suppressed growth of tumor in MCF-7 xenograft mice. Lectins, serine proteases, RNase Gf29 and a 230NA deoxyribonuclease are the major cytotoxic proteins that accounted for 55.93% of the HMWp.
Conclusion: The findings from this study provided scientific evidences to support the traditional use of the L. tigris sclerotia for treatment of breast cancer. Several cytotoxic proteins with high abundance have been identified in the HMWp of the sclerotial extract and these proteins have potential to be developed into new anticancer agents or as adjunct cancer therapy.
AIM OF THE STUDY: This study aimed to investigate the effect and mechanism of β-glucan prepared from L. rhinocerotis using an enzymatic method on epithelial restitution during intestinal mucosal damage.
MATERIALS AND METHODS: Based on FT-IR, MALDI-TOF-MS, HPSEC-MALLS-RID, and AFM, the structure of polysaccharides from L. rhinocerotis was analysed. In addition, polysaccharides were used to test for wound healing activity in IEC-6 cells by measuring cell migration, proliferation, and expression of cell division control protein 42, Rac-1, RhoA, and Par-3.
RESULTS: β-glucan was extracted using enzyme-assisted extraction, and a yield of approximately 8.5 ± 0.8% was obtained from the dried biomass. The β-glucan extracted by enzyme-assisted extraction (EAE) of polysaccharides was composed entirely of D-glucose with a total carbohydrate content of 95.5 ± 3.2%. The results of HPLC, FTIR, and MALDI-TOF-MS analyses revealed EAEP to be confirmed as β-glucan. The molecular weight of prepared β-glucan was found to be 5.315 × 104 g/mol by HPSEC-MALLS-RID. Furthermore, mucosal wound healing studies showed that the treatment of IEC-6 with a β-glucan concentration of 200 μg/mL promoted cell migration and proliferation, and it enhanced the protein expression of cell division control protein 42, Rac-1, RhoA, and Par-3.
CONCLUSIONS: The present study reveals that the prepared β-glucan accelerates intestinal epithelial cell proliferation and migration via activation of Rho-dependent pathway. Hence, β-glucan can be employed as a prospective therapeutic agent for the treatment of diseases associated with gastrointestinal mucosal damage, such as peptic ulcers and inflammatory bowel disease.
Methods: The mechanism involved in the cytotoxic activities of F5 against MCF7 cells was elucidated by flow cytometry-based apoptosis detection, caspases activity measurement, and expression profiling of apoptosis markers by western blotting. Molecular attributes of F5 were further mined from L. rhinocerus's published genome and transcriptome for future exploration.
Results and Discussion: Apoptosis induction in MCF7 cells by F5 may involve a cross-talk between the extrinsic and intrinsic apoptotic pathways with upregulation of caspase-8 and -9 activities and a marked decrease of Bcl-2. On the other hand, the levels of pro-apoptotic Bax, BID, and cleaved BID were increased accompanied by observable actin cleavage. At gene level, F5 composed of three predicted non-synonymous single nucleotide polymorphisms (T > C) and an alternative 5' splice site.
Conclusions: Findings from this study provide an advanced framework for further investigations on cancer therapeutics development from L. rhinocerus.
EXPERIMENTAL APPROACH: The chemical composition of the OCS02® cold water extract was determined, and the antioxidant activities were examined using ferric reducing, DPPH• and O2 •- scavenging assays. Tetrazolium dye (MTT) cytotoxic assay was performed to assess the antiproliferative activity of the extract. Bioactive proteins in the active fraction of the extract were identified using liquid chromatography (LC) and tandem-mass spectrometry (MS/MS).
RESULTS AND CONCLUSIONS: The OCS02® extract exhibited strong O2 •- scavenging (expressed as Trolox equivalents (18.4±1.1) mol/g) and potent cytotoxic activities against adenocarcinomic human alveolar basal epithelial (A549) cells (IC50=(58.2±6.8) µg/mL). High molecular mass polysaccharides, proteins and protein-polysaccharide complexes could have contributed to the antioxidant and cytotoxic selectivity of the OCS02®. LC-MS/MS analysis identified several potential cytotoxic proteases and an oxalate decarboxylase protein which may exhibit protection effects on kidneys.
NOVELTY AND SCIENTIFIC CONTRIBUTIONS: The findings demonstrate the potential of OCS02® to be developed into functional food due to its promising superoxide anion radical scavenging capacity, cytotoxic effect and presence of biopharmaceutically active proteins.