METHODS: All relevant studies were identified through keyword searches in electronic databases from inception until September 2020. The searched publications were reviewed, categorised and analysed based on their respective methodology.
RESULTS: Hundred and one publications were identified which utilised existing MC-based applications/programs or customised MC simulations. Two outstanding challenges were identified that contribute to uncertainties in the virtual simulation reconstruction. The first challenge involves the use of anatomical models to represent individuals. Currently, phantom libraries best balance the needs of clinical practicality with those of specificity. However, mismatches of anatomical variations including body size and organ shape can create significant discrepancies in dose estimations. The second challenge is that the exact positioning of the patient relative to the beam is generally unknown. Most dose prediction models assume the patient is located centrally on the examination couch, which can lead to significant errors.
CONCLUSION: The continuing rise of computing power suggests a near future where MC methods become practical for routine clinical dosimetry. Dynamic, deformable phantoms help to improve patient specificity, but at present are only limited to adjustment of gross body volume. Dynamic internal organ displacement or reshaping is likely the next logical frontier. Image-based alignment is probably the most promising solution to enable this, but it must be automated to be clinically practical.
METHODS: 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3.
RESULTS: Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified.
CONCLUSION: Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD.
KEY POINTS: • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.
METHODS: A phantom study was performed to investigate the correlation of (1)H MRS-visible lipids with the signal loss ratio (SLR) obtained using IOP imaging. A cross-sectional study approved by the institutional review board was carried out in 22 patients with different glioma grades. The patients underwent scanning using IOP imaging and single-voxel spectroscopy (SVS) using 3T MRI. The brain spectra acquisitions from solid and cystic components were obtained and correlated with the SLR for different grades.
RESULTS: The phantom study showed a positive linear correlation between lipid quantification at 0.9 parts per million (ppm) and 1.3 ppm with SLR (r = 0.79-0.99, p
OBJECTIVE: To assess, by diffusion tensor imaging, microstructural integrity of white matter in paediatric patients with acute lymphoblastic leukaemia (ALL) following intrathecal and intravenous chemotherapy.
MATERIALS AND METHODS: Eleven children diagnosed with de novo ALL underwent MRI scans of the brain with diffusion tensor imaging (DTI) prior to commencement of chemotherapy and at 12 months after diagnosis, using a 3-tesla (T) MRI scanner. We investigated the changes in DTI parameters in white matter tracts before and after chemotherapy using tract-based spatial statistics overlaid on the International Consortium of Brain Mapping DTI-81 atlas. All of the children underwent formal neurodevelopmental assessment at the two study time points.
RESULTS: Whole-brain DTI analysis showed significant changes between the two time points, affecting several white matter tracts. The tracts demonstrated longitudinal changes of decreasing mean and radial diffusivity. The neurodevelopment of the children was near compatible for age at the end of ALL treatment.
CONCLUSION: The quantification of white matter tracts changes in children undergoing chemotherapy showed improving longitudinal values in DTI metrics (stable fractional anisotropy, decreasing mean and radial diffusivity), which are incompatible with deterioration of microstructural integrity in these children.
METHODS: Continuous raw PPG waveforms were blindly allocated into segments with an equal length (5s) without leveraging any pulse location information and were normalized with Z-score normalization methods. A 1-D-CNN was designed to automatically learn the intrinsic features of the PPG waveform, and perform the required classification. Several training hyperparameters (initial learning rate and gradient threshold) were varied to investigate the effect of these parameters on the performance of the network. Subsequently, this proposed network was trained and validated with 30 subjects, and then tested with eight subjects, with our local dataset. Moreover, two independent datasets downloaded from the PhysioNet MIMIC II database were used to evaluate the robustness of the proposed network.
RESULTS: A 13 layer 1-D-CNN model was designed. Within our local study dataset evaluation, the proposed network achieved a testing accuracy of 94.9%. The classification accuracy of two independent datasets also achieved satisfactory accuracy of 93.8% and 86.7% respectively. Our model achieved a comparable performance with most reported works, with the potential to show good generalization as the proposed network was evaluated with multiple cohorts (overall accuracy of 94.5%).
CONCLUSION: This paper demonstrated the feasibility and effectiveness of applying blind signal processing and deep learning techniques to PPG motion artifact detection, whereby manual feature thresholding was avoided and yet a high generalization ability was achieved.
METHODS: 85 participants (43 fallers, 42 non-fallers) were evaluated with conventional MRI and diffusion tensor imaging (DTI) sequences of the brain. DTI metrics were obtained from selected WMT using tract-based spatial statistics (TBSS) method. This was followed by binary logistic regression to investigate the clinical variables that could act as confounding elements on the outcomes. The TBSS analysis was then repeated, but this time including all significant predictor variables from the regression analysis as TBSS covariates.
RESULTS: The mean diffusivity (MD) and axial diffusivity (AD) and to a lesser extent radial diffusivity (RD) values of the projection fibers and commissural bundles were significantly different in fallers (p < 0.05) compared to non-fallers. However, the final logistic regression model obtained showed that only functional reach, white matter lesion volume, hypertension and orthostatic hypotension demonstrated statistical significant differences between fallers and non-fallers. No significant differences were found in the DTI metrics when taking into account age and the four variables as covariates in the repeated analysis.
CONCLUSION: This DTI study of 85 subjects, do not support DTI metrics as a singular factor that contributes independently to the fall outcomes. Other clinical and imaging factors have to be taken into account.
MATERIAL AND METHODS: Forty-eight subjects (23 complicated mTBI [cmTBI] patients, 12 uncomplicated mTBI [umTBI] patients, and 13 controls) underwent magnetic resonance imaging scan with additional single voxel spectroscopy sequence. Magnetic resonance imaging scans for patients were done at an average of 10 hours (standard deviation 4.26) post injury. The single voxel spectroscopy adjacent to side of injury and noninjury regions were analysed to obtain absolute concentrations and ratio relative to creatine of the neurometabolites. One-way analysis of variance was performed to compare neurometabolite concentrations of the three groups, and a correlation study was done between the neurometabolite concentration and Glasgow Coma Scale.
RESULTS: Significant difference was found in ratio of N-acetylaspartate to creatine (NAA/Cr + PCr) (χ2(2) = 0.22, P
PURPOSE: To develop and validate a fully automated neural network regression-based algorithm for segmentation of the LV in cardiac MRI, with full coverage from apex to base across all cardiac phases, utilizing both short axis (SA) and long axis (LA) scans.
STUDY TYPE: Cross-sectional survey; diagnostic accuracy.
SUBJECTS: In all, 200 subjects with coronary artery diseases and regional wall motion abnormalities from the public 2011 Left Ventricle Segmentation Challenge (LVSC) database; 1140 subjects with a mix of normal and abnormal cardiac functions from the public Kaggle Second Annual Data Science Bowl database.
FIELD STRENGTH/SEQUENCE: 1.5T, steady-state free precession.
ASSESSMENT: Reference standard data generated by experienced cardiac radiologists. Quantitative measurement and comparison via Jaccard and Dice index, modified Hausdorff distance (MHD), and blood volume.
STATISTICAL TESTS: Paired t-tests compared to previous work.
RESULTS: Tested against the LVSC database, we obtained 0.77 ± 0.11 (Jaccard index) and 1.33 ± 0.71 mm (MHD), both metrics demonstrating statistically significant improvement (P < 0.001) compared to previous work. Tested against the Kaggle database, the signed difference in evaluated blood volume was +7.2 ± 13.0 mL and -19.8 ± 18.8 mL for the end-systolic (ES) and end-diastolic (ED) phases, respectively, with a statistically significant improvement (P < 0.001) for the ED phase.
DATA CONCLUSION: A fully automated LV segmentation algorithm was developed and validated against a diverse set of cardiac cine MRI data sourced from multiple imaging centers and scanner types. The strong performance overall is suggestive of practical clinical utility.
LEVEL OF EVIDENCE: 3 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018.
MATERIALS AND METHODS: This was a longitudinal study of eight IGHD subjects (2 males, 6 females) with a mean age of 11.1 ± 0.8 years and age-matched control groups. The pituitary gland, basal ganglia and limbic structures volumes were obtained using 3T MRI voxel-based morphology. The left-hand bone age was assessed using the Tanner-Whitehouse method. Follow-up imaging was performed after an average of 1.8 ± 0.4 years on rhGH.
RESULTS: Subjects with IGHD had a smaller mean volume of the pituitary gland, right thalamus, hippocampus, and amygdala than the controls. After rhGH therapy, these volumes normalized to the age-matched controls. Corpus callosum of IGHD subjects had a larger mean volume than the controls and did not show much volume changes in response to rhGH therapy. There were changes towards normalization of bone age deficit of IGHD in response to rhGH therapy.
CONCLUSION: The pituitary gland, hippocampus, and amygdala volumes in IGHD subjects were smaller than age-matched controls and showed the most response to rhGH therapy. Semi-automated volumetric assessment of pituitary gland, hippocampus, and amygdala using MRI may provide an objective assessment of response to rhGH therapy.
METHODS: This review paper focuses on the evolution of computer-aided diagnosis (CAD) systems for detecting skull fractures in TBI patients. It critically assesses advancements from feature-based algorithms to modern machine learning and deep learning techniques. We examine current approaches to data acquisition, the use of public datasets, algorithmic strategies, and performance metrics RESULTS: The review highlights the potential of CAD systems to provide quick and reliable diagnostics, particularly outside regular clinical hours and in under-resourced settings. Our discussion encapsulates the challenges inherent in automated skull fracture assessment and suggests directions for future research to enhance diagnostic accuracy and patient care.
CONCLUSION: With CAD systems, we stand on the cusp of significantly improving TBI management, underscoring the need for continued innovation in this field.