Methods: Combination of throat and nasal swab specimens was subjected to viral RNA extraction. For screening, the extracted RNA was subjected to real-time RT-PCR targeting upstream of E gene, open reading frame 1b and open reading frame 1a. For confirmation, the RNA was subjected to RT-PCR targeting partial part of the RNA-dependent RNA polymerase and nucleocapsid, followed by amplification of complete N gene region. Nucleotide sequencing of the first Malaysian case of MERS-CoV was performed following the confirmation with real-time RT-PCR detection.
Results: Initial analysis of partial RNA-dependent RNA polymerase and N gene revealed that the nucleotides had high similarity to Jeddah_1_2013 strain. Analysis of complete N gene region (1 242 nucleotides) from the case showed high similarity and yet distinct to the nucleotide sequences of camel-derived MERS-CoV.
Conclusions: From the finding, there are possibilities that the patient acquired the infection from zoonotic transmission from dromedary camels.
METHODS: A total of 45 samples from four hospitals that provide HIV viral load services were subjected to the amplification of the protease and two third of reverse transcriptase regions of the pol gene by RT-PCR and Sanger sequencing. Drug resistance mutation (DRM) interpretation reports the presence of mutations related to protease inhibitors (PIs), Nucleoside reverse-transcriptase inhibitors (NRTI) and Non-nucleoside reverse-transcriptase inhibitors (NNRTI) based on analysis using Stanford HIV database program.
RESULTS: DRMs were identified in 35% of patients, among which 46.7% of them showed minor resistance to protease inhibitor with A71V and L10l were the commonest DRMs detected. About 21.4% and 50.0% of patients had mutations to NRTIs and NNRTIs, respectively. CRF01_AE was found to be the predominant HIV-1 subtype.
CONCLUSIONS: These findings have served as an initial crucial data in determining the prevalence of transmitted HIV-1 drug resistance for the country. However, more samples from various parts of the country need to be accumulated and analyzed to provide overall HIV-1 drug resistance in the country.
METHODS: Lignosus rhinocerotis, Pleurotus giganteus, Hericium erinaceus, Schizophyllum commune and Ganoderma lucidium were selected for evaluation of their in-vitro anti-dengue virus serotype 2 (DENV-2) activities. Hot aqueous extracts (HAEs), ethanol extracts (EEs), hexane soluble extracts (HSEs), ethyl acetate soluble extracts (ESEs) and aqueous soluble extracts (ASEs) were prepared from the selected mushrooms. The cytotoxic effects of the extracts were evaluated by the MTT assay. The anti-DENV-2 activities of the extracts were evaluated in three different assays: simultaneous, attachment and penetration assays were perfomed using plaque reduction assays and RT-qPCR assays. The effect of the addition time on viral replication was assessed by the time of addition assay, and a virucidal assay was carried out to evaluate the direct effect of each mushroom extract on DENV-2. The chemical composition of glucans, and the protein and phenolic acid contents in the extracts were estimated.
RESULTS: We found that the HAEs and ASEs of L. rhinocerotis, P. giganteus, H. erinaceus and S. commune were the least toxic to Vero cells and showed very prominent anti-DENV2 activity. The 50% inhibitory concentration (IC50) values of the ASEs ranged between 399.2-637.9 μg/ml, while for the HAEs the range was 312.9-680.6 μg/ml during simultaneous treatment. Significant anti-dengue activity was also detected in the penetration assay of ASEs (IC50: 226.3-315.4 μg/ml) and HAEs (IC50: 943.1-2080.2 μg/ml). Similarly, we observed a marked reduction in the expression levels of the ENV and NS5 genes in the simultaneous and penetration assays of the ASEs and HAEs. Time-of-addition experiments showed that the highest percent of anti-DENV2 activity was observed when the mushroom extracts were added immediately after virus adsorption. None of the extracts exhibited virucidal effect. Chemical composition analysis showed that the major components in the mushroom HAEs and ASEs were glucan (beta D-glucan) and proteins, however, there was no significant correlation between the anti-dengue activity and the concentration of glucans and proteins.
CONCLUSION: These findings demonstrated the potential of mushroom extracts as anti-dengue therapeutic agents with less toxic effects.