Displaying publications 1 - 20 of 21 in total

Abstract:
Sort:
  1. Sharani, R., Kumar, S., Thilakavathy, K.
    MyJurnal
    Introduction: Lipoprotein L21 (LipL21) has been used as a molecular marker for leptospirosis as it is highly expressed in pathogenic Leptospira species during infection. However, it lacks specificity due to the newly emerging pathogenic serovars. Therefore, interrogation of LipL21 in all serovars needed to understand the pathogenesis of leptospirosis to enable early diagnosis. This study was carried out to determine the suitability of LipL21 as a molecular marker for leptospirosis by identifying the conserved sequences of LipL21 mRNA and amino acids in different Leptospira strains. Methods: Location of LipL21 conserved regions in 15 pathogenic and 2 non-pathogenic strains of five Leptospira species, were identified using bioinformatics database and tools such as National Center of Biotechnology, Rapid Annotation Subsystem Technology blast search, Muscle program and Jalview software. Results: Multiple sequence alignment analysis revealed that two conserved regions were observed in 10 pathogenic Leptospira strains from nucleotide position 29 to 53 and 100 to 137, however conserved amino acid sequences (111-149 and 155-192) were found in all the pathogenic strains. The distinction between gene and amino acid results is due to the degenerate genetic code feature. Conclusion: In conclusion, this study suggests that LipL21 protein has a potential to be used as a diagnostic marker for detection of Leptospira pathogens compared to LipL21 mRNA.
  2. Thilakavathy K, Rozita R, Baskaran TP
    J Prenat Med, 2008 Jul;2(3):36-9.
    PMID: 22439026
    Fetal cells and circulating cellfree fetal DNA increases in the maternal circulation in women carrying trisomy 21 fetus.
  3. Gao L, Thilakavathy K, Nordin N
    Cell Biol Int, 2013 Sep;37(9):875-87.
    PMID: 23619972 DOI: 10.1002/cbin.10120
    At the early stages of mammalian development, a number of developmentally plastic cells appear that possess the ability to give rise to all of the differentiated cell types normally derived from the three primary germ layers - unique character known as pluripotency. To date, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been shown to be truly pluripotent. However, recent studies have revealed a variety of other cells that demonstrate pluripotentiality, including very small embryonic-like stem cells (VSELs), amniotic fluid stem cells (AFSCs), marrow-isolated adult multilineage inducible cells (MIAMI) and multipotent adult precursor cells (MAPCs). This review summarises key features of these six kinds of pluripotent and potentially pluripotent stem cells (ESCs, iPSCs, VSELs, AFSCs, MIAMI and MAPCs) and the evidence for their pluripotency properties.
  4. Tavana N, Thilakavathy K, Kennerson ML, Ting TH
    Endokrynol Pol, 2021;72(4):366-394.
    PMID: 34292571 DOI: 10.5603/EP.a2021.0062
    Hypophosphataemic rickets (HR) is a genetic disorder causing defects in the renal handling of phosphorus, resulting in rickets. HR can be classified into two groups. First- those with excess fibroblast growth factor 23(FGF23) levels, which are due to gene mutations in extrarenal factors and include X-linked dominant hypophosphataemic rickets (XLHR), autosomal dominant hypophosphataemic rickets (ADHR), autosomal recessive hypophosphataemic rickets (ARHR), and hypophosphataemic rickets with hyperparathyroidism. Second- those with normal or low FGF23, which are caused by gene mutations in renal tubular phosphate transporters and include hereditary hypophosphataemic rickets with hypercalciuria (HHRH) and X-linked recessive hypophosphataemic rickets. The radiographical changes and clinical features of rickets in various types of HR are similar but not identical. Short stature, bone deformities mainly in the lower limbs, and dental problems are typical characteristics of HR. Although the initial diagnosis of HR is usually based on physical, radiological, and biochemical features, molecular genetic analysis is important to confirm the diagnosis and differentiate the type of HR. In this review, we describe clinical and biochemical features as well as genetic causes of different types of HR. The clinical and biochemical characteristics presented in this review can help in the diagnosis of different types of HR and, therefore, direct genetic analysis to look for the specific gene mutation.
  5. Lye KL, Nordin N, Vidyadaran S, Thilakavathy K
    Cell Biol Int, 2016 Jun;40(6):610-8.
    PMID: 26992453 DOI: 10.1002/cbin.10603
    Mesenchymal stem cells (MSCs) have garnered vast interests in clinical settings, especially in regenerative medicine due to their unique properties-they are reliably isolated and expanded from various tissue sources; they are able to differentiate into mesodermal tissues such as bones, cartilages, adipose tissues, and muscles; and they have unique immunosuppressive properties. However, there are some concerns pertaining to the role of MSCs in the human body. On one hand, they are crucial component in the regeneration and repair of the human body. On the contrary, they are shown to transform into sarcomas. Although the exact mechanisms are still unknown, many new leads have pointed to the belief that MSCs do play a role in sarcomagenesis. This review focuses on the current updates and findings of the role of MSCs in their transformation process into sarcomas.
  6. Tavana N, Ting TH, Lai K, Kennerson ML, Thilakavathy K
    Ital J Pediatr, 2022 Dec 08;48(1):193.
    PMID: 36482408 DOI: 10.1186/s13052-022-01385-5
    BACKGROUND: Hypophosphatemic rickets (HR) is a genetic disease of phosphate wasting that is characterized by defective bone mineralization. The most common cause of the disease is mutations in the phosphate regulating gene with homologies to endopeptidases on the X chromosome (PHEX) gene. The aims of this study were to identify the gene variants responsible for HR in three cases of Malaysian origin from three independent families and to describe their clinical, biochemical, and radiological features.

    METHODS: Whole exome sequencing (WES) was performed on all patients and their parents, followed by Sanger sequencing validation. Bioinformatics tools were used to provide supporting evidence for pathogenicity of variants. To confirm that a mutation is de novo, paternity test was carried out. High resolution melting curve analysis was performed to assess the allele frequency in normal controls for mutations that were found in the patients.

    RESULTS: The patients showed typical characteristics of HR including lower limb deformity, hypophosphatemia, and elevated alkaline phosphatase. WES revealed two variants in the PHEX gene and one variant in the dentin matrix protein 1 (DMP1) gene. Two of the three variants were novel, including c.1946_1954del (p.Gly649_Arg651del) in PHEX and c.54 + 1G > A in DMP1. Our data suggests that the novel p.Gly649_Arg651del variant is likely pathogenic for HR disease.

    CONCLUSIONS: This study extends the variant spectrum of the PHEX and DMP1 genes. Our findings indicate that WES is an advantageous approach for diagnosis of genetic diseases which are heterogeneous.

  7. Vealan K, Joseph N, Alimat S, Karumbati AS, Thilakavathy K
    Asian Biomed (Res Rev News), 2023 Dec;17(6):250-266.
    PMID: 38161347 DOI: 10.2478/abm-2023-0068
    The point-of-care testing (POCT) approach has established itself as having remarkable importance in diagnosing various infectious and non-communicable diseases (NCDs). The POCT approach has succeeded in meeting the current demand for having diagnostic strategies that can provide fast, sensitive, and highly accurate test results without involving complicated procedures. This has been accomplished by introducing rapid bioanalytical tools or biosensors such as lateral flow assays (LFAs). The production cost of these tools is very low, allowing developing countries with limited resources to utilize them or produce them on their own. Thus, their use has grown in various fields in recent years. More importantly, LFAs have created the possibility for a new era of incorporating nanotechnology in disease diagnosis and have already attained significant commercial success worldwide, making POCT an essential approach not just for now but also for the future. In this review, we have provided an overview of POCT and its evolution into the most promising rapid diagnostic approach. We also elaborate on LFAs with a special focus on nucleic acid LFAs.
  8. Sun Z, Thilakavathy K, Kumar SS, He G, Liu SV
    PMID: 32138266 DOI: 10.3390/ijerph17051633
    Within last 17 years two widespread epidemics of severe acute respiratory syndrome (SARS) occurred in China, which were caused by related coronaviruses (CoVs): SARS-CoV and SARS-CoV-2. Although the origin(s) of these viruses are still unknown and their occurrences in nature are mysterious, some general patterns of their pathogenesis and epidemics are noticeable. Both viruses utilize the same receptor-angiotensin-converting enzyme 2 (ACE2)-for invading human bodies. Both epidemics occurred in cold dry winter seasons celebrated with major holidays, and started in regions where dietary consumption of wildlife is a fashion. Thus, if bats were the natural hosts of SARS-CoVs, cold temperature and low humidity in these times might provide conducive environmental conditions for prolonged viral survival in these regions concentrated with bats. The widespread existence of these bat-carried or -released viruses might have an easier time in breaking through human defenses when harsh winter makes human bodies more vulnerable. Once succeeding in making some initial human infections, spreading of the disease was made convenient with increased social gathering and holiday travel. These natural and social factors influenced the general progression and trajectory of the SARS epidemiology. However, some unique factors might also contribute to the origination of SARS in Wuhan. These factors are discussed in different scenarios in order to promote more research for achieving final validation.
  9. Aissvarya S, Ling KH, Arumugam M, Thilakavathy K
    EFORT Open Rev, 2024 Aug 01;9(8):723-732.
    PMID: 39087497 DOI: 10.1530/EOR-23-0056
    Dupuytren's contracture (DC) is a fibroproliferative disorder of the palmar fascia characterised by the digits' flexion contractures and is associated with abnormal build-up of type III collagen. The prevalence of the disease is reported to be highest among Northern European descendants. However, the disease is widespread globally with varying prevalence. DC is a multifactorial disease, having both genetic and environmental factors contributing to the causality of the disease. Over the years, various studies have been conducted to understand the molecular mechanism and genetic aspects of DC but there is a lack of reports on the variants found in the exonic regions. Most reports are backdated making it necessary to re-evaluate the variants to further understand the genetic aetiology of DC. In this review, we first highlight the genetic aspects and previous genetic studies on DC. The report is followed by a discussion on the molecular pathways suggested to be associated with DC and a summary of the genetic variants in the exonic regions found in DC and their connections with the molecular pathways. A total of nine variants were reported originating from six genes comprising three pathways. Most variants reported are involved in the Wnt signalling pathway. Moreover, all variants identified are in European/Caucasian subjects and the variants found in the exonic regions are missense variants. A comparison of these findings with variants from populations of other regions can be conducted to identify the variants with the most occurrence to act as biomarkers or therapeutic targets for DC.
  10. Hooshmand S, Ghaderi A, Yusoff K, Thilakavathy K, Rosli R, Mojtahedi Z
    Asian Pac J Cancer Prev, 2014;15(7):3311-7.
    PMID: 24815488
    BACKGROUND: The consequence of Rho GDP dissociation inhibitor alpha (RhoGDIα) activity on migration and invasion of estrogen receptor positive (ER+) and negative (ER-) breast cancer cells has not been studied using the proteomic approach. Changes in expression of RhoGDIα and other proteins interacting directly or indirectly with RhoGDIα in MCF7 and MDA-MB-231, with different metastatic potentials is of particular interest.

    MATERIALS AND METHODS: ER+ MCF7 and ER- MDA-MB-231 cell lines were subjected to two-dimensional electrophoresis (2-DE) and spots of interest were identified by matrix-assisted laser desorption/ionization time of- flight/time- of-flight (MALDI-TOF/TOF) mass spectrometry (MS) analysis after downregulation of RhoGDIα using short interfering RNA (siRNA) and upregulated using GFP-tagged ORF clone of RhoGDIα.

    RESULTS: The results showed a total of 35 proteins that were either up- or down-regulated in these cells. Here we identifed 9 and 15 proteins differentially expressed with silencing of RhoGDIα in MCF-7 and the MDA-MB-231 cells, respectively. In addition, 10 proteins were differentially expressed in the upregulation of RhoGDIα in MCF7, while only one protein was identified in the upregulation of RhoGDIα in MDA-MB-231. Based on the biological functions of these proteins, the results revealed that proteins involved in cell migration are more strongly altered with RhoGDI-α activity. Although several of these proteins have been previously indicated in tumorigenesis and invasiveness of breast cancer cells, some ohave not been previously reported to be involved in breast cancer migration. Hence, these proteins may serve as useful candidate biomarkers for tumorigenesis and invasiveness of breast cancer cells.

    CONCLUSIONS: Future studies are needed to determine the mechanisms by which these proteins regulate cell migration. The combination of RhoGDIα with other potential biomarkers may be a more promising approach in the inhibition of breast cancer cell migration.

  11. Subramanian MS, Nandagopal Ms G, Amin Nordin S, Thilakavathy K, Joseph N
    Molecules, 2020 Sep 09;25(18).
    PMID: 32916777 DOI: 10.3390/molecules25184111
    Allium sativum (garlic) is widely known and is consumed as a natural prophylactic worldwide. It produces more than 200 identified chemical compounds, with more than 20 different kinds of sulfide compounds. The sulfide compounds particularly are proven to contribute to its various biological roles and pharmacological properties such as antimicrobial, antithrombotic, hypoglycemic, antitumour, and hypolipidemic. Therefore, it is often referred as disease-preventive food. Sulphur-containing compounds from A. sativum are derivatives of S-alkenyl-l-cysteine sulfoxides, ajoene molecules, thiosulfinates, sulfides, and S-allylcysteine. This review presents an overview of the water-soluble and oil-soluble sulphur based phytochemical compounds present in garlic, highlighting their mechanism of action in treating various health conditions. However, its role as a therapeutic agent should be extensively studied as it depends on factors such as the effective dosage and the suitable method of preparation.
  12. Zamanpoor M, Rosli R, Yazid MN, Husain Z, Nordin N, Thilakavathy K
    J Matern Fetal Neonatal Med, 2013 Jul;26(10):960-6.
    PMID: 23339569 DOI: 10.3109/14767058.2013.766710
    OBJECTIVE: To quantify circulating fetal DNA (fDNA) levels in the second and third trimesters of normal healthy pregnant individuals and pregnant women with the following clinical conditions: gestational diabetes mellitus (GDM), iron deficiency anemia and gestational hypertension (GHT).
    METHODS: The SRY gene located on the Y chromosome was used as a unique fetal marker. The fDNA was extracted from maternal plasma and the SRY gene concentrations were measured by quantitative real-time polymerase chain reaction (PCR) amplification using TaqMan dual labeled probe system.
    RESULTS: No significant differences were observed in the mean fDNA concentration between normal and GDM pregnancy samples (p > 0.05) and also between normal and anemic pregnancy samples (p > 0.05) in both trimesters, but significant differences were observed between the third trimester normal and GHT pregnancy samples (p = 0.001). GDM and iron deficiency anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma.
    CONCLUSIONS: Increased amount of circulating fDNA in maternal plasma could be used for early identification of adverse pregnancies. GDM and anemia do not affect the levels of fDNA in maternal plasma while GHT significantly elevates the levels of fDNA in maternal plasma. Hence, the elevated fDNA values could be used as a potential screening marker in pregnancies complicated with GHT but not with GDM and iron deficiency anemia.
  13. Tan NJ, Daim LD, Jamil AA, Mohtarrudin N, Thilakavathy K
    Electrophoresis, 2017 03;38(5):633-644.
    PMID: 27992069 DOI: 10.1002/elps.201600377
    Effective protein extraction is essential especially in producing a well-resolved proteome on 2D gels. A well-resolved placental cotyledon proteome, with good reproducibility, have allowed researchers to study the proteins underlying the physiology and pathophysiology of pregnancy. The aim of this study is to determine the best protein extraction protocol for the extraction of protein from placental cotyledons tissues for a two-dimensional gel electrophoresis (2D-GE). Based on widely used protein extraction strategies, 12 different extraction methodologies were carefully selected, which included one chemical extraction, two mechanical extraction coupled protein precipitations, and nine chemical extraction coupled protein precipitations. Extracted proteins were resolved in a one-dimensional gel electrophoresis and 2D-GE; then, it was compared with set criteria: extraction efficacy, protein resolution, reproducibility, and recovery efficiency. Our results revealed that a better profile was obtained by chemical extraction in comparison to mechanical extraction. We further compared chemical extraction coupled protein precipitation methodologies, where the DNase/lithium chloride-dense sucrose homogenization coupled dichloromethane-methanol precipitation (DNase/LiCl-DSH-D/MPE) method showed good protein extraction efficiency. This, however, was carried out with the best protein resolution and proteome reproducibility on 2D-gels. DNase/LiCl-DSH-D/MPE was efficient in the extraction of proteins from placental cotyledons tissues. In addition, this methodology could hypothetically allow the protein extraction of any tissue that contains highly abundant lipid and glycogen.
  14. Sun Z, Xiong C, Teh SW, Lim JCW, Kumar S, Thilakavathy K
    PMID: 31867287 DOI: 10.3389/fcimb.2019.00412
    Pancreatic cancer is a highly lethal disease, and most patients remain asymptomatic until the disease enters advanced stages. There is lack of knowledge in the pathogenesis, effective prevention and early diagnosis of pancreatic cancer. Recently, bacteria were found in pancreatic tissue that has been considered sterile before. The distribution of flora in pancreatic cancer tissue was reported to be different from normal pancreatic tissue. These abnormally distributed bacteria may be the risk factors for inducing pancreatic cancer. Therefore, studies on combined effect of multi-bacterial and multi-virulence factors may add to the knowledge of pancreatic cancer pathogenesis and aid in designing new preventive and therapeutic strategies. In this review, we outlined three oral bacteria associated with pancreatic cancer and their virulence factors linked with cancer.
  15. Li Y, Hou J, Sun Z, Hu J, Thilakavathy K, Wang Y, et al.
    Signal Transduct Target Ther, 2023 Jul 17;8(1):278.
    PMID: 37460567 DOI: 10.1038/s41392-023-01540-2
  16. Sun Z, He G, Huang N, Thilakavathy K, Lim JCW, Kumar SS, et al.
    Front Pharmacol, 2021;12:707205.
    PMID: 34305613 DOI: 10.3389/fphar.2021.707205
    The total number of cumulative cases and deaths from the COVID-19 pandemic caused by SARS-CoV-2 is still increasing worldwide. Although many countries have actively implemented vaccination strategies to curb the epidemic, there is no specific efficient therapeutic drug for this virus to effectively reduce deaths. Therefore, the underappreciated macromolecular compounds have become the spotlight of research. Furthermore, the medicinal compounds in plants that provide myriad possibilities to treat human diseases have become of utmost importance. Experience indicates that Traditional Chinese medicine effectively treats SARS and has been used for treating patients with COVID-19 in China. As one of the world's oldest herbal remedies, licorice is used for treating patients with all stages of COVID-19. Glycyrrhizic acid (GA), the main active compound in licorice, has been proven effective in killing the SARS virus. Meanwhile, as a natural plant molecule, GA can also directly target important protein structures of the SARS-CoV-2 virus and inhibit the replication of SARS-CoV-2. In this review, we summarized the immune synergy of GA and its potential role in treating COVID-19 complications. Besides, we reviewed its anti-inflammatory effects on the immune system and its positive effects in cooperation with various drugs to fight against COVID-19 and its comorbidities. The purpose of this review is to elucidate and suggest that GA can be used as a potential drug during COVID-19 treatment.
  17. Lee YL, Ting TH, Lim CT, Thilakavathy K, Musa NH, Ling KH
    PMID: 38647408 DOI: 10.4274/jcrpe.galenos.2024.2023-12-1
    IGSF1 mutation is the commonest cause of mild to moderate isolated central congenital hypothyroidism and has an X-linked recessive inheritance, primarily affecting males. Other notable clinical features are macroorchidism with delayed pubertal testosterone rise, large birth weight, increased body mass index, low prolactin, transient growth hormone deficiency and low prolactin. Two male siblings with central hypothyroidism were found to have a novel IGSF1 c.3467T>A variant that was likely pathogenic based on the family segregation study. The proband, aged 3 years presented at 18 days old with prolonged jaundice while his 16-year-old brother was only detected to have central hypothyroidism after the proband's genetic analysis result was known. Both siblings were obese, had large birth weights, macroorchidism and low prolactin. The proband's brother had intellectual disability while the proband had normal development. This case study highlights the importance of evaluation for the IGSF1 variant in patients with unexplained central hypothyroidism, especially when accompanied by X-linked inheritance and macroorchidism. Family segregation analysis allows detection of other affected family members or carriers who may also benefit from thyroxine treatment.
  18. Al-Battawi S, Latif MT, How V, Thilakavathy K, Abd Hamid HH, Hameed S, et al.
    Environ Res, 2024 Nov 15;261:119744.
    PMID: 39098713 DOI: 10.1016/j.envres.2024.119744
    Ambient polycyclic aromatic hydrocarbons (PAHs) originate predominantly from fuel combustion of motor vehicles and have the potential to affect human health. However, there is insufficient knowledge regarding serum PAHs health risks among the Malaysian population. This study aims to compare PAH concentrations, distributions, correlations, and health risks in 202 blood serum samples drawn from residents living in high-traffic volume areas (Kuala Lumpur) and low-traffic volume areas (Hulu Langat) in Malaysia. Solid phase extraction and gas chromatography-mass spectrometry (GC-MS) were employed to extract and analyze blood serum samples. Questionnaires were distributed to obtain sociodemographic and contributing factors of serum PAHs. The mean total PAHs concentration in serum of the Kuala Lumpur group was 54.44 ng g-1 lipids, double the Hulu Langat group's concentration (25.7 ng g-1 lipids). Indeno(1,2,3-cd)pyrene (IcP) and acenaphthene (ACP) feature the most and least abundant compounds in both study groups. The mean concentrations of IcP and ACP in the Kuala Lumpur and Hulu Langat groups were 26.8 vs 12.68 and 0.27 vs 0.14 ng g-1 lipids, respectively. High-molecular-weight PAHs (HMW-PAHs) composed 85% of serum total PAHs in both groups. Significant correlations were found (i) between the individual serum PAH congeners (p 
  19. Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, et al.
    Reprod Biol, 2017 Mar;17(1):9-18.
    PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001
    Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
  20. Mun-Fun H, Ferdaos N, Hamzah SN, Ridzuan N, Hisham NA, Abdullah S, et al.
    Res Vet Sci, 2015 Oct;102:89-99.
    PMID: 26412526 DOI: 10.1016/j.rvsc.2015.07.010
    Amniotic fluid stem cells (AFSCs) are commonly isolated from mid-term amniotic fluid (AF) of animals and human collected via an invasive technique, amniocentesis. Alternatively, AFSCs could be collected at full-term. However, it is unclear whether AFSCs are present in the AF at full term. Here, we aimed to isolate and characterize stem cells isolated from AF of full term pregnant rats. Three stem cell lines have been established following immuno-selection against the stem cell marker, c-kit. Two of the new lines expressed multiple markers of pluripotency until more than passage 90. Further, they spontaneously differentiated into derivatives of the three primary germ layers through the formation of good quality embryoid bodies (EBs), and can be directly differentiated into neural lineage. Their strong stemness and potent neurogenic properties highlight the presence of highly potent stem cells in AF of full-term pregnancies, which could serve as a potential source of stem cells for regenerative medicine.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links