Displaying all 14 publications

Abstract:
Sort:
  1. Tang J, Yao D, Xia S, Cheong L, Tu M
    Food Chem X, 2024 Oct 30;23:101540.
    PMID: 39007110 DOI: 10.1016/j.fochx.2024.101540
    Plant proteins can meet consumers' demand for healthy and sustainable alternatives to animal proteins. It has been reported to possess numerous health benefits and is widely used in the food industry. However, conventional extraction methods are time-consuming, energy-intensive, as well as environmentally unfriendly. Plant proteins are also limited in application due to off-flavors, allergies, and anti-nutritional factors. Therefore, this paper discusses the challenges and limitations of conventional extraction processes. The current advances in green extraction technologies are also summarized. In addition, methods to improve the nutritional value, bioactivity, functional and organoleptic properties of plant proteins, and strategies to reduce their allergenicity are mentioned. Finally, examples of applications of plant proteins in the food industry are presented. This review aims to stimulate thinking and generate new ideas for future research. It will also provide new ideas and broad perspectives for the application of plant proteins in the food industry.
  2. Sun C, Song G, Pan Z, Tu M, Kharaziha M, Zhang X, et al.
    Bioresour Technol, 2023 Jan;368:128356.
    PMID: 36414144 DOI: 10.1016/j.biortech.2022.128356
    The valorization of organosolv pretreatment (OP) is a required approach to the industrialization of the current enzyme-mediated lignocellulosic biorefinery. Recent literature has demonstrated that the solvolysis happening in the OP can modify the soluble components into value-added active compounds, namely organosolv modified lignin (OML) and organosolv modified sugars (OMSs), in addition to protecting them against excessive degradation. Among them, the OML is coincidental with the "lignin-first" strategy that should render a highly reactive lignin enriched with β-O-4 linkages and less condensed structure by organosolv grafting, which is desirable for the transformation into phenolic compounds. The OMSs are valuable glycosidic compounds mainly synthesized by trans-glycosylation, which can find potential applications in cosmetics, foods, and healthcare. Therefore, a state-of-the-art OP holds a big promise of lowering the process cost by the valorization of these active compounds. Recent advances in organosolv modified components are reviewed, and perspectives are made for addressing future challenges.
  3. Fan Q, Zeng X, Wu Z, Guo Y, Du Q, Tu M, et al.
    PMID: 37318213 DOI: 10.1080/10408398.2023.2220803
    Lactic acid bacteria (LAB) is a type of probiotic that may benefit intestinal health. Recent advances in nanoencapsulation provide an effective strategy to protect them from harsh conditions via surface functionalization coating techniques. Herein, the categories and features of applicable encapsulation methods are compared to highlight the significant role of nanoencapsulation. Commonly used food-grade biopolymers (polysaccharides and protein) and nanomaterials (nanocellulose and starch nanoparticles) are summarized along with their characteristics and advances to demonstrate enhanced combination effects in LAB co-encapsulation. Nanocoating for LAB provides an integrity dense or smooth layer attributed to the cross-linking and assembly of the protectant. The synergism of multiple chemical forces allows for the formation of subtle coatings, including electrostatic attractions, hydrophobic interactions, π-π, and metallic bonds. Multilayer shells have stable physical transition properties that could increase the space between the probiotic cells and the outer environment, thus delaying the microcapsules burst time in the gut. Probiotic delivery stability can be promoted by enhancing the thickness of the encapsulated layer and nanoparticle binding. Maintenance of benefits and minimization of nanotoxicity are desirable, and green synthesized nanoparticles are emerging. Future trends include optimized formulation, especially using biocompatible materials, protein or plant-based materials, and material modification.
  4. Wang Z, Xu J, Zeng X, Du Q, Lan H, Zhang J, et al.
    J Agric Food Chem, 2024 Jan 10;72(1):80-93.
    PMID: 38152984 DOI: 10.1021/acs.jafc.3c07217
    Traditional antibiotics are facing a tremendous challenge due to increased antimicrobial resistance; hence, there is an urgent need to find novel antibiotic alternatives. Milk protein-derived antimicrobial peptides (AMPs) are currently attracting substantial attention considering that they showcase an extensive spectrum of antimicrobial activities, with slower development of antimicrobial resistance and safety of raw materials. This review summarizes the molecular properties, and activity mechanisms and highlights the applications and limitations of AMPs derived from milk proteins comprehensively. Also the analytical technologies, especially bioinformatics methodologies, applied in the process of screening, identification, and mechanism illustration of AMPs were underlined. This review will give some ideas for further research and broadening of the applications of milk protein-derived AMPs in the food field.
  5. Yao D, Shen C, Yu J, Tang J, Zhang H, Xu X, et al.
    Food Chem, 2024 Jul 01;445:138691.
    PMID: 38354646 DOI: 10.1016/j.foodchem.2024.138691
    Milk fat globule membrane proteins (MFGMP) in human milks have positive effects on infant's health. As gestational diabetes mellitus (GDM) causes variations in MFGMP, it is essential to understand the effects of GDMon MFGMP. This study aims to investigate and compare the MFGMP (>3 months postpartum) of GDM and non-GDM (NGDM) women using four-dimensional-data-independent-acquisition proteomics technology. Principal component analysis shows significant differences in the MFGMP of GDM and NGDM women. A total of 4747 MFGMP were identified in maturehuman milk of GDM and NGDM women. Among these proteins, 174 differentially expressed proteins (DEPs) were identified in MFGM of GDM and NGDM women. Albumin (FC = 7.96) and transthyretin (FC = 2.57) which are related to insulin resistance and involved in thyroid hormone synthesis, are significantly up-regulated in MFGMP of GDM mothers indicating insulin resistance, imbalance of glucose homeostasis and poor glucose metabolism might persist in postpartum period.
  6. Du Q, Li H, Tu M, Wu Z, Zhang T, Liu J, et al.
    Colloids Surf B Biointerfaces, 2024 Jun;238:113929.
    PMID: 38677155 DOI: 10.1016/j.colsurfb.2024.113929
    In recent years, with increasing emphasis on healthy, green, and sustainable consumption concepts, plant-based foods have gained popularity among consumers. As widely sourced plant-based raw materials, legume proteins are considered sustainable and renewable alternatives to animal proteins. However, legume proteins have limited functional properties, which hinder their application in food products. LAB fermentation is a relatively natural processing method that is safer than chemical/physical modification methods and can enrich the functional properties of legume proteins through biodegradation and modification. Therefore, changes in legume protein composition, structure, and functional properties and their related mechanisms during LAB fermentation are described. In addition, the specific enzymatic hydrolysis mechanisms of different LAB proteolytic systems on legume proteins are also focused in this review. The unique proteolytic systems of different LAB induce specific enzymatic hydrolysis of legume proteins, resulting in the production of hydrolysates with diverse functional properties, including solubility, emulsibility, gelability, and foamability, which are determined by the composition (peptide/amino acid) and structure (secondary/tertiary) of legume proteins after LAB fermentation. The correlation between LAB-specific enzymatic hydrolysis, protein composition and structure, and protein functional properties will assist in selecting legume protein raw materials and LAB strains for legume plant-based food products and expand the application of legume proteins in the food industry.
  7. Fan Q, Xia C, Zeng X, Wu Z, Guo Y, Du Q, et al.
    Curr Res Food Sci, 2024;8:100749.
    PMID: 38694558 DOI: 10.1016/j.crfs.2024.100749
    Nitrite has the potential risk of hypoxic poisoning or cancer in pickled food. In our previous study, Limosilactobacillus fermentum (L. fermentum) RC4 is effective in nitrite degradation by producing nitrite reductase B (NirB). To investigate the detailed mechanism from the genome, response, and regulation of NirB, the whole-genome sequence of L. fermentum RC4 was analyzed, the L. fermentum-EGFP-nirB with enhanced green fluorescent protein (EGFP) labeled the nitrite reductase large subunit nirB, and the recombined L. fermentum-NirB with overexpression NirB strain was conducted. The key genes within the dominant metabolism pathways may be involved in stress tolerance to regulate the degrading process. The green fluorescence density of EGFP indicated that NirB activity has a threshold and peaked under 300 mg/L nitrite concentration. NirB overexpressed in L. fermentum RC4 boosted the enzyme activity by 39.6% and the degradation rate by 10.5%, when fermented in 300 mg/L for 40 h, compared to the control group. RNA-seq detected 248 differential genes mainly enriched in carbohydrate, amino acid, and energy metabolism. The ackA gene for pyruvate metabolism and the mtnN gene for cysteine metabolism were up-regulated. NirB regulates these genes to produce acid and improve stress resistance for L. fermentum RC4 to accelerate nitrite degradation.
  8. Yan R, Zeng X, Shen J, Wu Z, Guo Y, Du Q, et al.
    J Sci Food Agric, 2024 Aug 30;104(11):6376-6387.
    PMID: 38450745 DOI: 10.1002/jsfa.13444
    Strain activity and stability severely limit the beneficial effects of probiotics in modulating host health. Postbiotics have emerged as a promising alternative as they can provide similar or even enhanced efficacy to probiotics, even under inactivated conditions. This review introduces the ingredients, preparation, and identification techniques of postbiotics, focusing on the comparison of the advantages and limitations between probiotics and postbiotics based on their mechanisms and applications. Inactivation treatment is the most significant difference between postbiotics and probiotics. We highlight the use of emerging technologies to inactivate probiotics, optimize process conditions to maintain the activity of postbiotics, or scale up their production. Postbiotics have high stability which can overcome unfavorable factors, such as easy inactivation and difficult colonization of probiotics after entering the intestine, and are rapidly activated, allowing continuous and rapid optimization of the intestinal microecological environment. They provide unique mechanisms, and multiple targets act on the gut-organ axis, co-providing new clues for the study of the biological functions of postbiotics. We summarize the mechanisms of action of inactivated lactic acid bacteria, highlighting that the NF-κB and MAPK pathways can be used as immune targeting pathways for postbiotic modulation of host health. Generally, we believe that as the classification, composition, and efficacy mechanism of postbiotics become clearer they will be more widely used in food, medicine, and other fields, greatly enriching the dimensions of food innovation. © 2024 Society of Chemical Industry.
  9. Yan R, Liu M, Zeng X, Du Q, Wu Z, Guo Y, et al.
    Int J Biol Macromol, 2024 Apr 25;269(Pt 1):131873.
    PMID: 38677699 DOI: 10.1016/j.ijbiomac.2024.131873
    Here, we developed a nano-TiO2-nisin-modified chitosan composite packaging film and investigated its properties and antibacterial activity, as well as its effect on chilled pork preservation time. The results indicated that the preservation time of chilled pork coated with a nano-TiO2-nisin-modified chitosan film (including 0.7 g/L nano-TiO2, irradiated with ultraviolet light for 40 min, and dried for 6 h) followed by modified atmosphere packaging (50% CO2 + 50% N2) increased from 7 to 20 days at 4 °C. Both nano-TiO2 and nisin enhanced the mechanical strength of the chitosan film, and nisin promoted nano-TiO2 dispersion and compatibility in chitosan. Treatment with 0.4 g/L nano-TiO2 for 60 min considerably inhibited spoilage bacteria, particularly Acinetobacter johnnii XBB1 (A. johnnii XBB1). As nano-TiO2 concentration and photocatalytic time increased, K+, Ca2+, and Mg2+ leakage in A. johnnii XBB1 increased but Na+/K+-ATPase and Ca2+/Mg2+-ATPase activities decreased. In A. johnnii XBB1, TiO2 significantly downregulated the expression of putrefaction-related genes such as cysM and inhibited cell self-regulation and membrane wall system repair. Therefore, our nano-TiO2-nisin-modified chitosan film could extend the shelf life without the addition of any chemical preservatives, demonstrating great potential for application in food preservation.
  10. Fan S, Liu Q, Du Q, Zeng X, Wu Z, Pan D, et al.
    Int J Biol Macromol, 2024 Aug 23;279(Pt 1):134993.
    PMID: 39181375 DOI: 10.1016/j.ijbiomac.2024.134993
    Type 2 diabetes mellitus (T2DM), a disease that threatens public health worldwide and can cause a series of irreversible complications, has been a major concern. Although the treatment based on hypoglycemic drugs is effective, its side effects should not be ignored, which has led to an urgent need for developing new hypoglycemic drugs. Bioactive peptides with antidiabetic effects obtained from food proteins have become a research hotspot as they are safer and with higher specificity than traditional hypoglycemic drugs. Here, we reviewed antidiabetic peptides that have the ability to inhibit key enzymes (α-glucosidase, α-amylase, and DPP-IV) in T2DM, the hypoglycemic mechanisms and structure-activity relationships were summarized, some antidiabetic peptides that improve insulin resistance and reverse gut microbiota and their metabolites were overviewed, the bitterness of antidiabetic peptides was predicted in silico, proposed solutions to the current challenges encountered in the development of antidiabetic peptide drugs, and provided an outlook on the future focus of commercial production. It provides a reference for the application of food-derived antidiabetic peptides.
  11. Cheng L, Wang F, Guo Y, Du Q, Zeng X, Wu Z, et al.
    Food Chem, 2025 Jan 15;463(Pt 3):141335.
    PMID: 39316909 DOI: 10.1016/j.foodchem.2024.141335
    The purpose of this paper is to investigate the potential prebiotic properties and proliferation mechanism of fermented milk-derived peptides. In this study, fermented milk-derived polypeptides were obtained by extraction, separation, and purification. The purified peptides were used to culture fecal flora in vitro, and the relative abundance and composition of the flora were analyzed by high-throughput 16S rRNA sequencing technology. The results showed that peptides can promote the proliferation of beneficial bacteria Lactococcus in the intestine and inhibit the proliferation of harmful bacteria Escherichia coli-Shigella. The amino acid sequence of polypeptide components was determined and synthesized in vitro to verify the proliferation of intestinal flora; the proliferation mechanism of peptides on Lactococcus lactis was studied using non-targeted LC-MS metabolomics technology. Five important peptides with molecular weights of 1000-2000 Da were identified by LC-MS: GRP1 (LTEEEK), GRP2 (ENDAPSPVM*K), GRP3 (ITVDDK), GRP4 (EAM*APK) and GRP5 (LPPPEK). The results showed that the peptides could affect the arginine biosynthesis pathway and the amino sugar and nucleotide sugar metabolism of Lactococcus lactis. In addition, the peptides increased the expression of organic acids and their derivatives in Lactococcus lactis. This study provides a research basis for expanding the potential sources of new prebiotics and also opens up a new idea for discovering new prebiotics in vitro.
  12. Qiu W, Wang Z, Liu Q, Du Q, Zeng X, Wu Z, et al.
    Food Sci Nutr, 2024 Sep;12(9):6055-6069.
    PMID: 39554349 DOI: 10.1002/fsn3.4228
    The number of patients with inflammatory bowel disease (IBD) is increasing worldwide. Since IBD is a chronic disease that seriously affects patients' life quality, preventing and alleviating IBD with natural and less side effect substances has become a research hotspot. Food-derived bioactive peptides have been an attractive research focus due to their high efficiency and low toxicity. This paper comprehensively summarizes food-derived peptides with intestinal health effects, focusing on peptide sequences with IBD-regulatory effects and emphasizing the effects of their structure and physicochemical properties such as peptide length, amino acid composition, and net charge on their function. We also analyzed its regulatory mechanisms, mainly in 5 aspects: modulating the intestinal microbiota, decreasing intestinal epithelial permeability, increasing antioxidant ability, regulating the expression of inflammatory cytokines, and targeting signaling pathways. This review will help establish novel, efficient screening methods for IBD-regulatory peptides and contribute to further research and discovery of them.
  13. Zhao X, Qiu W, Shao XG, Fu B, Qiao X, Yuan Z, et al.
    RSC Adv, 2024 Mar 26;14(15):10152-10160.
    PMID: 38544946 DOI: 10.1039/d4ra00890a
    Umami peptides are new ingredients for the condiment and seasoning industries, with healthy and nutrition characteristics, some of which were identified from aquatic proteins. This study aims to further explore novel umami peptides from Atlantic cod (Gadus morhua) by combining in silico, nano-HPLC-MS/MS, sensory evaluation, and electronic tongue analysis. Two novel peptides, Leu-Val-Asp-Lys-Leu (LVDKL) and Glu-Ser-Lys-Ile-Leu (ESKIL), from the myosin heavy chain of Atlantic cod (Gadus morhua), were screened and confirmed to have strong umami tastes with the thresholds of 0.427 mM and 0.574 mM, respectively. The molecular docking was adopted to explore the interactions between the umami peptides and the umami taste receptor T1R1/T1R3, which showed that the umami peptides interacted with T1R1/T1R3 mainly by electrostatic interaction, hydrogen bond interaction, and hydrophobic interaction. Furthermore, the physicochemical properties of the peptides were investigated by in silico methods and cell viability experiments. This study will provide a better understanding of the umami taste in Atlantic cod and will promote the development of condiments and seasonings.
  14. Yao D, Shen C, Zhang X, Tang J, Yu J, Tu M, et al.
    Food Chem, 2024 Dec 01;460(Pt 3):140663.
    PMID: 39142199 DOI: 10.1016/j.foodchem.2024.140663
    Gestational diabetes mellitus (GDM) is a prevalent metabolic disorder during pregnancy that alters the metabolites in human milk. Integrated Gas Chromatography-Mass Spectrometry (GC-MS) and Liquid Chromatography-Mass Spectrometry (LC-MS) were employed for comprehensive identification and comparison of metabolites in mature human milk (MHM) from women with and without GDM. A total of 268 differentially expressed metabolites (DEMs) were identified. Among these, linoleic acid, arachidonic acid, 9R-HODE and L-glutamic acid were significantly elevated and 12,13-DHOME was significantly decreased in MHM of women with GDM. These metabolites are significantly enriched in linoleic acid metabolism, fatty acid biosynthesis, galactose metabolism and ABC transporters pathways. Disorders in these metabolic pathways are associated with insulin resistance and poor glucose metabolism indicating these conditions may persist postpartum.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links