Displaying all 18 publications

Abstract:
Sort:
  1. Shamshir RA, Wee SL
    J Insect Physiol, 2019 09 26;119:103949.
    PMID: 31563620 DOI: 10.1016/j.jinsphys.2019.103949
    Certain male fruit flies from the genera Bactrocera and Zeugodacus (Diptera: Tephritidae) actively forage for floral semiochemicals produced by some endemic Bulbophyllum orchids found in tropical and subtropical forests. These floral semiochemicals are largely classified as either phenylbutanoids (e.g., raspberry ketone (RK)) or phenylpropanoids (e.g., methyl eugenol (ME)). Zingerone (ZN) is a phenylbutanoid recently found that structurally resembles ME and RK, both of which are phytochemicals commonly used as male attractants in fruit fly control programmes. It was previously shown that feeding on ME and RK increased the mating success of certain tephritid fruit flies, specifically in B. dorsalis and B. tryoni males, respectively, through enhancement of sexual signaling. However, ZN, which acts as a metabolic enhancer to increase male courtship activity in B. tryoni, did not show the same effect. As fruit fly-phytochemical lure interactions are unique and species-specific phenomena, this study seeks to elucidate the ecological significance of ZN feeding to Zeugodacus tau in terms of sexual signaling. We demonstrate here that ZN feeding by Z. tau males enhanced female attraction and subsequent mating success by increasing male courtship, and the attractiveness of the sexual signals in both wind tunnel and semi-field cage bioassays. In addition, we also demonstrated temporal effects on male behaviour in relation to the amount of lure intake. However, feeding on ZN did not appear to affect the total time spent in copula for Z. tau. This is the first report showing an important role of ZN in increasing courtship activity as well as enhancement of sexual signaling in Z. tau males.
  2. Wee SL, Clarke AR
    Sci Rep, 2020 09 14;10(1):15004.
    PMID: 32929156 DOI: 10.1038/s41598-020-72209-x
    Males of certain Dacini fruit flies are strongly attracted to, and feed upon, plant secondary compounds such as methyl eugenol, raspberry ketone and zingerone. The consumed lure is generally found to induce physiological and behavioural changes that enhance the mating performance of lure-fed males. Male Bactrocera jarvisi respond strongly to zingerone from a young age, but only weakly respond to raspberry ketone. We hypothesized that this selective lure-response would be reflected in the physiological importance of the lure to the fly. We found that zingerone feeding by young males resulted in significantly greater mating success in competitive mating trials with lure-deprived flies, but the mating advantage was lost in older males. Lure dosage had a significant effect on the duration of the mating advantage, for example when fed 20 µg of zingerone, the advantage lasted only 1 day post-feeding, but when fed of 50 µg zingerone the advantage lasted 7 days. Raspberry ketone feeding did not confer any mating advantage to males except at one dosage (50 µg) for 1 day after feeding. When given a choice, B. jarvisi females preferred to mate with zingerone-fed versus to raspberry ketone-fed males. This study revealed lure, dosage and age of fly at time of lure administration are all important factors for maximising lure-enhanced fruit fly mating performance. These findings contribute to a better theoretical understanding of the evolution of fruit fly-lure interactions and may help improve fruit fly pest management via the Sterile Insect Technique through semiochemical-mediated enhancement of sterile male mating performance.
  3. Wee SL, Tan KH
    J Chem Ecol, 2001 May;27(5):953-64.
    PMID: 11471947 DOI: 10.1023/A:1010387020135
    Methyl eugenol (ME), is converted into two major phenylpropanoids, 2-allyl-4,5-dimethoxyphenol and trans-coniferyl alcohol, following consumption by the male fruit fly Bactrocera papayae. Chemical analysis of wild male B. papayae rectal glands, where the compounds are sequestered, revealed the presence of ME metabolites in varying quantities. These phenylpropanoids are shown to be involved in the fruit fly defense both in no-choice and choice feeding tests against the Malayan spiny gecko, Gekko monarchus. After being acclimatized to feeding on fruit flies, geckos consumed significantly fewer ME-fed male flies than controls that consumed all the ME-deprived male flies offered throughout a two-week period. Diagnosis of dissected livers from geckos that consumed ME-fed male flies revealed various abnormalities. These included discoloration and hardening of liver tissue, whitening of the gallbladder, or presence of tumor-like growths in all geckos that consumed ME-fed male flies. Control geckos fed on ME-deprived male flies had healthy livers. When given an alternative prey, geckos preferred to eat untreated house flies, Musca domestica to avoid preying on ME-fed fruit flies.
  4. Wee SL, Tan KH
    J Chem Ecol, 2005 Apr;31(4):845-58.
    PMID: 16124255 DOI: 10.1007/s10886-005-3548-6
    Bactrocera carambolae and B. papayae are major fruit fly pests and sympatric sibling species of the B. dorsalis complex. They possess distinct differences in male pheromonal components. In the 1990's, wild Bactrocera fruit flies with morphological traits intermediate between those of B. carambolae and B. papayae were often captured in traps baited with methyl eugenol (ME). Chemical analyses of rectal glands of ME-fed males revealed that the laboratory Fl, F2, and backcross hybrids possessed ME-derived sex pheromonal components ranging from that typical of B. papayae to that of B. carambolae without any specific trend, which included a combination of pheromonal components from both parental species within an individual hybrid. ME-fed hybrids without any ME-derived pheromonal components were also detected. Further chemical analysis of rectal glands from wild Bactrocera males, after ME feeding in the laboratory, showed a combination of pheromonal components similar to that found in the ME-fed, laboratory-bred hybrids. These findings present circumstantial evidence for the occurrence of a natural hybrid of the two Bactrocera species.
  5. Wee SL, Tan SB, Jürgens A
    Phytochemistry, 2018 Sep;153:120-128.
    PMID: 29906658 DOI: 10.1016/j.phytochem.2018.06.005
    The plants of the enigmatic genus Rafflesia are well known for their gigantic flowers and their floral features such as pungent floral scent and vivid dark color, which mimics the food/brood sites of carrion. However, information on the pollination biology of this plant group remains limited and mostly anecdotal. In the present paper, we studied the floral volatiles of R. cantleyi Solms-Laubach and their role in pollinator attraction. To achieve these aims, the floral scent was collected in situ in the field using a dynamic headspace method followed by chemical analysis via GC-MS. The olfactory preferences of pollinators to the identified chemical compounds, were tested singly and in blends, in flight tunnel bioassays and compared with responses to headspace floral extracts. In addition, flower-visiting calliphorid flies and the local carrion fly community were sampled and identified. Five species of calliphorid flies (subfamilies of Chrysomyinae and Calliphorinae), all females, were found on the flowers, whereas nine species were found in the traps that were baited with tainted meat in the surrounding habitat. However, only flower visitors of one blow fly species, Chrysomya chani Kurahashi, were observed to carry R. cantleyi pollen after visiting male flowers. The floral volatiles emitted by male flowers in full bloom were dominated by two sulphur-containing compounds, dimethyl disulfide (DMDS) and dimethyl trisulfide (DMTS). These were accompanied by other minor compounds such as benzenoids (4), monoterpenoids (4), trace amounts of aliphatic compounds (1), and sesquiterpenes (1). In flight-tunnel bioassays, a female-specific positive response of C. chani flies to individual DMDS, DMTS, and a blend of DMDS and DMTS was evident. Our findings suggest that R. cantleyi biochemically mimics carrion and that relative ratio of oligosulfides in the floral scent play a key role in sex-biased pollinator specialization, attracting only female C. chani carrion flies to the flowers.
  6. Wee SL, Tan KH, Nishida R
    J Chem Ecol, 2007 Jun;33(6):1272-82.
    PMID: 17443401 DOI: 10.1007/s10886-007-9295-0
    After pharmacophagy of methyl eugenol (ME), males of Bactrocera carambolae (Diptera: Tephritidae) produced (E)-coniferyl alcohol (CF) along with its endogenously synthesized pheromonal compounds. CF was shown to be released into the air by the ME-fed males only during the courtship period at dusk and attracted significantly more males and females than the ME-deprived males in wind tunnel assays. However, earlier onset of sexual attraction and a higher mating success were observed only in the wind tunnel and field cage assays on the third day posttreatment of ME. Field cage observations on the male-to-male interaction indicated that the ME-deprived males did not exhibit aggregation behavior, but that ME feeding promoted aggregation behavior in B. carambolae. Field cage observations revealed that the ME-deprived males were not only attracted to the ME-fed males, but also appeared to feed on their anal secretions. The secretions were subsequently confirmed to contain CF along with endogenously produced pheromonal compounds. Results obtained for B. carambolae were compared to those previously obtained from its sibling species, Bactrocera dorsalis, and are discussed in light of species advancement in fruit fly-plant relationships.
  7. Hee AK, Ooi YS, Wee SL, Tan KH
    Zookeys, 2015.
    PMID: 26798265 DOI: 10.3897/zookeys.540.6099
    Males of certain species belonging to the Bactrocera dorsalis complex are strongly attracted to, and readily feed on methyl eugenol (ME), a plant secondary compound that is found in over 480 plant species worldwide. Amongst those species is one of the world's most severe fruit pests the Oriental fruit fly, Bactrocera dorsalis s.s., and the former taxonomic species Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis. The latter species have been recently synonymised with Bactrocera dorsalis based on their very similar morphology, mating compatibility, molecular genetics and identical sex pheromones following consumption of ME. Previous studies have shown that male fruit fly responsiveness to lures is a unique phenomenon that is dose species-specific, besides showing a close correlation to sexual maturity attainment. This led us to use ME sensitivity as a behavioural parameter to test if Bactrocera dorsalis and the three former taxonomic species had similar sensitivity towards odours of ME. Using Probit analysis, we estimated the median dose of ME required to elicit species' positive response in 50% of each population tested (ED50). ED50 values were compared between Bactrocera dorsalis and the former species. Our results showed no significant differences between Bactrocera dorsalis s.s., and the former Bactrocera invadens, Bactrocera papayae and Bactrocera philippinensis in their response to ME. We consider that the Bactrocera males' sensitivity to ME may be a useful behavioural parameter for species delimitation and, in addition to other integrative taxonomic tools used, provides further supportive evidence that the four taxa belong to one and the same biological species, Bactrocera dorsalis.
  8. Chieng AC, Hee AK, Wee SL
    J Insect Sci, 2018 Sep 01;18(5).
    PMID: 30351432 DOI: 10.1093/jisesa/iey104
    The oriental fruit fly, Bactrocera dorsalis (Handel) is one of the most destructive pests of fruits. The discovery of methyl eugenol (ME) as a potent male attractant for this species has led to its successful use in area-wide fruit fly control programs such as male annihilation. While the antenna is recognized as primarily responsible for male flies' detection of attractants such as ME, little is known of the involvement of the maxillary palp. Using behavioral assays involving males with intact and ablated antennae and maxillary palp structures, we seek to ascertain the relative involvement of the maxillary palp in the ability of the male fly to detect ME. In cage bioassays (distance of ≤40 cm from the source), >97% of unmodified males will normally show a response to ME. Here, we showed that 17.6% of males with their antennae ablated were still attracted to ME versus 75.0% of males with their palps ablated. However, none of the antennae-ablated males were able to detect ME over a distance of >100 cm. Furthermore, wind tunnel bioassays showed that maxillary palp-ablated males took a significantly longer time compared to unablated males to successfully detect and eventually feed on ME. These results suggest that although the antennae are necessary for detection of ME over longer distances, at shorter distances, both antennae and maxillary palps are also involved in detecting ME. Hence, those palps may play a larger role than previously recognized in maneuvering males toward lure sources over shorter ranges.
  9. Wee SL, Abdul Munir MZ, Hee AKW
    Bull. Entomol. Res., 2018 Feb;108(1):116-124.
    PMID: 28625191 DOI: 10.1017/S0007485317000554
    The Artocarpus fruit fly, Bactrocera umbrosa (Fabricius) (Diptera: Tephritidae), is an oligophagous fruit pest infesting Moraceae fruits, including jackfruit (Artocarpus heterophyllus Lamarck), a fruit commodity of high value in Malaysia. The scarcity of fundamental biological, physiological and ecological information on this pest, particularly in relation to behavioural response to phytochemical lures, which are instrumental to the success of many area-wide fruit fly control and management programmes, underpins the need for studies on this much-underrated pest. The positive response of B. umbrosa males to methyl eugenol (ME), a highly potent phytochemical lure, which attracts mainly males of many Bactrocera species, was shown to increase with increasing age. As early as 7 days after emergence (DAE), ca. 22% of males had responded to ME and over 50% by 10 DAE, despite no occurrence of matings (i.e. the males were still sexually immature). Male attraction to ME peaked from 10 to 27 DAE, which corresponded with the flies' attainment of sexual maturity. In wind-tunnel assays during the dusk courtship period, ME-fed males exhibited earlier calling activity and attracted a significantly higher percentage of virgin females compared with ME-deprived males. ME-fed males enjoyed a higher mating success than ME-deprived males at 1-day post ME feeding in semi-field assays. ME consumption also promotes aggregation behaviour in B. umbrosa males, as demonstrated in wind-tunnel and semi-field assays. We suggest that ME plays a prominent role in promoting sexual communication and enhancing mating performance of the Artocarpus fruit fly, a finding that is congruent with previous reports on the consequences of ME acquisition by other economically important Bactrocera species.
  10. Wee SL, Tan SB, Tan SH, Lee BKB
    J Plant Res, 2024 Feb 14.
    PMID: 38353931 DOI: 10.1007/s10265-024-01522-7
    Despite being the world's largest single-flower, Rafflesia's biology and life history are still poorly understood due to its cryptic growth strategy on Tetrastigma vines. Previous studies have been mostly short-term, contrary to Rafflesia's long development period before blooming. Bud development and flower phenology of R. cantleyi was studied in a dipterocarp forest in Lata Jarum, Peninsular Malaysia. Seven populations, consisting of 247 buds, were monitored fortnightly for 65 months in two discrete studies between 2009 and 2018. The bud size distribution of R. cantleyi is dynamic, progressively changing from small flower buds to larger buds before flowering. Buds  15.0 cm across demonstrated accelerated growth. The bud growth profiles of the same site clustered distinctively regardless of sex with successful blooming rate that varied greatly between sites, prompting speculation about their relatedness to the sites' physical attributes. We reported the first female-dominated population in Rafflesia's life history. Rafflesia cantleyi's blooming rate at Lata Jarum is moderate to high, with non-seasonal flowering phenology as evident by the lack of synchronisation and consistency between flowering and local rainfall patterns. Based on the field data of the present study and the published information of other Rafflesia species, R. cantleyi's life cycle was estimated between 4.0 and 5.3 years. Our findings further explain Rafflesia's biology and life history and highlight the gap in knowledge of the natural habitats on the endoparasite's growth and fate potentially for future conservation and study.
  11. Hee AK, Wee SL, Nishida R, Ono H, Hendrichs J, Haymer DS, et al.
    Zookeys, 2015.
    PMID: 26798266 DOI: 10.3897/zookeys.540.6028
    An FAO/IAEA-sponsored coordinated research project on integrative taxonomy, involving close to 50 researchers from at least 20 countries, culminated in a significant breakthrough in the recognition that four major pest species, Bactrocera dorsalis, Bactrocera philippinensis, Bactrocera papayae and Bactrocera invadens, belong to the same biological species, Bactrocera dorsalis. The successful conclusion of this initiative is expected to significantly facilitate global agricultural trade, primarily through the lifting of quarantine restrictions that have long affected many countries, especially those in regions such as Asia and Africa that have large potential for fresh fruit and vegetable commodity exports. This work stems from two taxonomic studies: a revision in 1994 that significantly increased the number of described species in the Bactrocera dorsalis species complex; and the description in 2005 of Bactrocera invadens, then newly incursive in Africa. While taxonomically valid species, many biologists considered that these were different names for one biological species. Many disagreements confounded attempts to develop a solution for resolving this taxonomic issue, before the FAO/IAEA project commenced. Crucial to understanding the success of that initiative is an accounting of the historical events and perspectives leading up to the international, multidisciplinary collaborative efforts that successfully achieved the final synonymization. This review highlights the 21 year journey taken to achieve this outcome.
  12. Marshall DG, Jackson TA, Unelius CR, Wee SL, Young SD, Townsend RJ, et al.
    Naturwissenschaften, 2016 Aug;103(7-8):59.
    PMID: 27352077 DOI: 10.1007/s00114-016-1380-1
    Costelytra zealandica (Coleoptera: Scarabeidae) is a univoltine endemic species that has colonised and become a major pest of introduced clover and ryegrass pastures that form about half of the land area of New Zealand. Female beetles were previously shown to use phenol as their sex pheromone produced by symbiotic bacteria in the accessory or colleterial gland. In this study, production of phenol was confirmed from the female beetles, while bacteria were isolated from the gland and tested for attractiveness towards grass grub males in traps in the field. The phenol-producing bacterial taxon was identified by partial sequencing of the 16SrRNA gene, as Morganella morganii. We then tested the hypothesis that the phenol sex pheromone is biosynthesized from the amino acid tyrosine by the bacteria. This was shown to be correct, by addition of isotopically labelled tyrosine ((13)C) to the bacterial broth, followed by detection of the labelled phenol by SPME-GCMS. Elucidation of this pathway provides specific evidence how the phenol is produced as an insect sex pheromone by a mutualistic bacteria.
  13. Lee PS, Dong MH, Yan XL, He TY, Yu SF, Wee SL, et al.
    Biodivers Data J, 2023;11:e108438.
    PMID: 37736305 DOI: 10.3897/BDJ.11.e108438
    Mammalian DNA extracted from the invertebrates, especially blowfly-derived DNA, has been suggested as a useful tool to complement traditional field methods for terrestrial mammal monitoring. However, the accuracy of the estimated location of the target mammal detected from blowfly-derived DNA is largely dependent on the knowledge of blowflies' dispersal range. Presently, published data on adult blowfly dispersal capabilities remain scarce and mostly limited to temperate and subtropical regions, with no published report on the adult blowfly dispersal range in the Tropics. We seek to determine the blowfly flight range and dispersal activity in a tropical plantation in Malaysia by mark-release-recapture of approximately 3000 wild blowflies by use of rotten fish-baited traps for nine consecutive days. Out of the 3000 marked Chrysomya spp., only 1.5% (43) were recaptured during the 9-day sampling period. The majority of the blowflies (79%) were recaptured 1 km from the release point, while 20.9% were caught about 2-3 km from the release point. One individual blowfly travelled as far as 3 km and before being recaptured, which was the maximum dispersal distance recorded in this study. This result suggests that the estimated locations of the mammals detected from blowfly-derived iDNA is likely to be within 1-2 km radius from the origin of the blowfly sampling location. However, a more accurate estimated distance between the target mammal and the blowfly sampling location requires further investigation due to various factors, such as blowfly species, wind speed and direction that may potentially affect the blowfly dispersal activities. This study contributes further understanding on the development of a blowfly-derived DNA method as a mammalian monitoring tool in the tropical forests.
  14. Ong S, Woo J, Parikh P, Chan R, Sun J, Mun CY, et al.
    Asia Pac J Clin Nutr, 2019;28(2):204-213.
    PMID: 31192548 DOI: 10.6133/apjcn.201906_28(2).0001
    The number of older persons in Asia is expected to triple by 2050. Ageing is associated with non-communicable chronic diseases, malnutrition, and geriatric syndromes, which influences the burden on the cost related to healthcare, health outcomes, and the quality of life. Experts in the field of older adult nutrition from Asia, Australia, and Europe were invited to participate in a two-day workshop to review the available data, current policies and programs for the ageing population in different countries of Asia to identify the gaps in knowledge and to develop recommendations for action. In Asia, most of the data pertaining to health status, nutritional status, and nutrient intake of the older persons were mainly obtained by conducting studies in nursing homes or hospitals and small cohort studies. There were limited country-specific data on this population. Moreover, the available data pertaining to different countries were difficult to compare due to differences in the reporting format and reference values used. Although nutrition initiatives and policies were realized and public education was conducted to support the older persons, most of these efforts targeted the general population rather than the older persons population segment. In healthcare management, a higher amount of education is required pertaining to the knowledge of nutritional requirements and appropriate feeding of the older persons to reduce underfeeding and its consequences. The expert group recommended the use of a systematic approach for reviewing data pertaining to different countries, initiatives, and programs to further evaluate the available data to underpin future research.
  15. Deschepper P, Vanbergen S, Zhang Y, Li Z, Hassani IM, Patel NA, et al.
    Evol Appl, 2023 Jan;16(1):48-61.
    PMID: 36699130 DOI: 10.1111/eva.13507
    An increasing number of invasive fruit fly pests are colonizing new grounds. With this study, we aimed to uncover the invasion pathways of the oriental fruit fly, Bactrocera dorsalis into the islands of the Indian Ocean. By using genome-wide SNP data and a multipronged approach consisting of PCA, ancestry analysis, phylogenetic inference, and kinship networks, we were able to resolve two independent invasion pathways. A western invasion pathway involved the stepping-stone migration of B. dorsalis from the east African coast into the Comoros, along Mayotte and into Madagascar with a decreasing genetic diversity. The Mascarene islands (Reunion and Mauritius), on the contrary, were colonized directly from Asia and formed a distinct cluster. The low nucleotide diversity suggests that only a few genotypes invaded the Mascarenes. The presence of many long runs of homozygosity (ROH) in the introduced populations is indicative of population bottlenecks, with evidence of a more severe bottleneck for populations along the western migration pathway than on the Mascarene islands. More strict phytosanitary regulations are recommended in order to prevent the further spread of B. dorsalis.
  16. Drosopoulou E, Syllas A, Goutakoli P, Zisiadis GA, Konstantinou T, Pangea D, et al.
    Insects, 2019 Nov 28;10(12).
    PMID: 31795125 DOI: 10.3390/insects10120429
    Bactrocera carambolae is one of the approximately 100 sibling species of the Bactrocera dorsalis complex and considered to be very closely related to B. dorsalis. Due to their high morphological similarity and overlapping distribution, as well as to their economic impact and quarantine status, the development of reliable markers for species delimitation between the two taxa is of great importance. Here we present the complete mitochondrial genome of B. carambolae sourced from its native range in Malaysia and its invaded territory in Suriname. The mitogenome of B. carambolae presents the typical organization of an insect mitochondrion. Comparisons of the analyzed B. carambolae sequences to all available complete mitochondrial sequences of B. dorsalis revealed several species-specific polymorphic sites. Phylogenetic analysis based on Bactrocera mitogenomes supports that B. carambolae is a differentiated taxon though closely related to B. dorsalis. The present complete mitochondrial sequences of B. carambolae could be used, in the frame of Integrative Taxonomy, for species discrimination and resolution of the phylogenetic relationships within this taxonomically challenging complex, which would facilitate the application of species-specific population suppression strategies, such as the sterile insect technique.
  17. Zhang Y, Liu S, De Meyer M, Liao Z, Zhao Y, Virgilio M, et al.
    J Adv Res, 2023 Nov;53:61-74.
    PMID: 36574947 DOI: 10.1016/j.jare.2022.12.012
    INTRODUCTION: The oriental fruit fly Bactrocera dorsalis is one of the most destructive agricultural pests worldwide, with highly debated species delimitation, origin, and global spread routes.

    OBJECTIVES: Our study intended to (i) resolve the taxonomic uncertainties between B. dorsalis and B. carambolae, (ii) reveal the population structure and global invasion routes of B. dorsalis across Asia, Africa, and Oceania, and (iii) identify genomic regions that are responsible for the thermal adaptation of B. dorsalis.

    METHODS: Based on a high-quality chromosome-level reference genome assembly, we explored the population relationship using a genome-scale single nucleotide polymorphism dataset generated from the resequencing data of 487 B. dorsalis genomes and 25 B. carambolae genomes. Genome-wide association studies and silencing using RNA interference were used to identify and verify the candidate genes associated with extreme thermal stress.

    RESULTS: We showed that B. dorsalis originates from the Southern India region with three independent invasion and spread routes worldwide: (i) from Northern India to Northern Southeast Asia, then to Southern Southeast Asia; (ii) from Northern India to Northern Southeast Asian, then to China and Hawaii; and (iii) from Southern India toward the African mainland, then to Madagascar, which is mainly facilitated by human activities including trade and immigration. Twenty-seven genes were identified by a genome-wide association study to be associated with 11 temperature bioclimatic variables. The Cyp6a9 gene may enhance the thermal adaptation of B. dorsalis and thus boost its invasion, which tended to be upregulated at a hardening temperature of 38 °C. Functional verification using RNA interference silencing against Cyp6a9, led to the specific decrease in Cyp6a9 expression, reducing the survival rate of dsRNA-feeding larvae exposed to extreme thermal stress of 45 °C after heat hardening treatments in B. dorsalis.

    CONCLUSION: This study provides insights into the evolutionary history and genetic basis of temperature adaptation in B. dorsalis.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links