Displaying publications 1 - 20 of 45 in total

Abstract:
Sort:
  1. Wong YS, Allotey P, Reidpath DD
    PMID: 29868204 DOI: 10.1017/gheg.2016.8
    Universal health coverage is a key health target in the Sustainable Development Goals (SDGs) that has the means to link equitable social and economic development. As a concept firmly based on equity, it is widely accepted at international and national levels as important for populations to attain 'health for all' especially for marginalised groups. However, implementing universal coverage has been fraught with challenges and the increasing privatisation of health care provision adds to the challenge because it is being implemented in a health system that rests on a property regime that promotes inequality. This paper asks the question, 'What does an equitable health system look like?' rather than the usual 'How do you make the existing health system more equitable?' Using an ethnographic approach, the authors explored via interviews, focus group discussions and participant observation a health system that uses the commons approach such as which exists with indigenous peoples and found features that helped make the system intrinsically equitable. Based on these features, the paper proposes an alternative basis to organise universal health coverage that will better ensure equity in health systems and ultimately contribute to meeting the SDGs.
  2. Wong YS, Zulkefly NS, Tan KA
    Int J Adolesc Med Health, 2020 Jun 08;33(6):493-500.
    PMID: 32549164 DOI: 10.1515/ijamh-2019-0228
    OBJECTIVES: The present study aimed to examine the mediational role of maladaptive cognitive schema in the association between stressful life events, which are operationalised as major (i. e. negative life events) and minor (i. e. daily hassles) life stressors, and depressive symptoms among adolescents.

    METHODS: A cross-sectional correlational study was conducted to recruit participants across four selected states of Kedah, Kelantan, Melaka and Selangor in Peninsular Malaysia. This study involved a total of 1,032 adolescents from 25 government secondary schools, identified using probability proportional to size cluster sampling technique. Data were collected through a self-report questionnaire.

    RESULTS: Using structural equation modelling analyses, findings revealed a full mediation effect of maladaptive cognitive schema between negative life events and depressive symptoms, and a partial mediation effect between daily hassles and depressive symptoms.

    CONCLUSIONS: This study provided valuable insights about the significance of maladaptive cognitive schema as a mediator in the stress-depression association and advanced the understanding of mechanism underlying development of depressive symptoms among adolescents in Malaysia. Findings also benefit the clinical practice in the development of targeted depression prevention and intervention programs.

  3. Wong YS, Willoughby AR, Machado L
    Psychol Res, 2023 Mar;87(2):357-372.
    PMID: 35348846 DOI: 10.1007/s00426-022-01676-w
    Mind wandering is a universal phenomenon in which our attention shifts away from the task at hand toward task-unrelated thoughts. Despite it inherently involving a shift in mental set, little is known about the role of cognitive flexibility in mind wandering. In this article we consider the potential of cognitive flexibility as a mechanism for mediating and/or regulating the occurrence of mind wandering. Our review begins with a brief introduction to the prominent theories of mind wandering-the executive failure hypothesis, the decoupling hypothesis, the process-occurrence framework, and the resource-control account of sustained attention. Then, after discussing their respective merits and weaknesses, we put forward a new perspective of mind wandering focused on cognitive flexibility, which provides an account more in line with the data to date, including why older populations experience a reduction in mind wandering. After summarizing initial evidence prompting this new perspective, drawn from several mind-wandering and task-switching studies, we recommend avenues for future research aimed at further understanding the importance of cognitive flexibility in mind wandering.
  4. Murali V, Ong SA, Ho LN, Wong YS
    Bioresour Technol, 2013 Sep;143:104-11.
    PMID: 23792659 DOI: 10.1016/j.biortech.2013.05.122
    This study was to investigate the mineralization of wastewater containing methyl orange (MO) in integrated anaerobic-aerobic biofilm reactor with coconut fiber as bio-material. Different aeration periods (3h in phase 1 and 2; 3, 6 and 15 h in phase 3; 24 h in phase 4 and 5) in aerobic chamber were studied with different MO concentration 50, 100, 200, 200 and 300 mg/L as influent from phase 1-5. The color removals estimated from the standard curve of dye versus optical density at its maximum absorption wavelength were 97%, 96%, 97%, 97%, and 96% and COD removals were 75%, 72%, 63%, 81%, and 73% in phase 1-5, respectively. The MO decolorization and COD degradation followed first-order kinetic model and second-order kinetic model, respectively. GC-MS analysis indicated the symmetrical cleavage of azo bond and the reduction in aromatic peak ensured the partial mineralization of MO.
  5. Murali V, Ong SA, Ho LN, Wong YS, Hamidin N
    Water Environ Res, 2013 Mar;85(3):270-7.
    PMID: 23581242
    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye.
  6. Wong YS, Kadir MO, Teng TT
    Bioresour Technol, 2009 Nov;100(21):4969-75.
    PMID: 19560338 DOI: 10.1016/j.biortech.2009.04.074
    Biological kinetic (bio-kinetic) study of the anaerobic stabilization pond treatment of palm oil mill effluent (POME) was carried out in a laboratory anaerobic bench scale reactor (ABSR). The reactor was operated at different feed flow-rates of 0.63, 0.76, 0.95, 1.27, 1.9 and 3.8l of raw POME for a day. Chemical oxygen demand (COD) as influent substrates was selected for bio-kinetic study. The investigation showed that the growth yield (Y(G)), specific biomass decay (b), maximum specific biomass growth rate (mu(max)), saturation constant (K(s)) and critical retention time (Theta(c)) were in the range of 0.990 g VSS/g COD(removed) day, 0.024 day(-1), 0.524 day(-1), 203.433 g COD l(-1) and 1.908 day, respectively.
  7. Ong SA, Min OM, Ho LN, Wong YS
    Environ Sci Pollut Res Int, 2013 May;20(5):3405-13.
    PMID: 23114839 DOI: 10.1007/s11356-012-1286-1
    The objective of this study was to examine the effects of adsorbability and number of sulfonate group on solar photocatalytic degradation of mono azo methyl orange (MO) and diazo Reactive Green 19 (RG19) in single and binary dye solutions. The adsorption capacity of MO and RG19 onto the TiO₂ was 16.9 and 26.8 mg/g, respectively, in single dye solution, and reduced to 5.0 and 23.1 mg/g, respectively, in the binary dye solution. The data obtained for photocatalytic degradation of MO and RG19 in single and binary dye solution were well fitted with the Langmuir-Hinshelwood kinetic model. The pseudo-first-order rate constants of diazo RG19 were significant higher than the mono azo MO either in single or binary dye solutions. The higher number of sulfonate group in RG19 contributed to better adsorption capacity onto the surface of TiO₂ than MO indicating greater photocatalytic degradation rate.
  8. Su CX, Teng TT, Wong YS, Morad N, Rafatullah M
    Chemosphere, 2016 Mar;146:503-10.
    PMID: 26741557 DOI: 10.1016/j.chemosphere.2015.12.048
    A thermal degradation pathway of the decolourisation of Reactive Cibacron Blue F3GA (RCB) in aqueous solution through catalytic thermolysis is established. Catalytic thermolysis is suitable for the removal of dyes from wastewater as it breaks down the complex dye molecules instead of only transferring them into another phase. RCB is a reactive dye that consists of three main groups, namely anthraquinone, benzene and triazine groups. Through catalytic thermolysis, the bonds that hold the three groups together were effectively broken and at the same time, the complex molecules degraded to form simple molecules of lower molecular weight. The degradation pathway and products were characterized and determined through UV-Vis, FT-IR and GCMS analysis. RCB dye molecule was successfully broken down into simpler molecules, namely, benzene derivatives, amines and triazine. The addition of copper sulphate, CuSO4, as a catalyst, hastens the thermal degradation of RCB by aiding in the breakdown of large, complex molecules. At pH 2 and catalyst mass loading of 5 g/L, an optimum colour removal of 66.14% was observed. The degradation rate of RCB is well explained by first order kinetics model.
  9. Wong YS, Sia CM, Khoo HE, Ang YK, Chang SK, Chang SK, et al.
    Acta Sci Pol Technol Aliment, 2014 Jul-Sep;13(3):257-65.
    PMID: 24887941
    As a by-product of tropical fruit juice industry, passion fruit peel is a valuable functional food. It is rich in antioxidants. To determine its potential antioxidant properties of passion fruit peel, this study aimed to evaluate the effect of extraction conditions on total phenolic content and antioxidant activity.
  10. Teh TL, Rahman NN, Shahadat M, Wong YS, Syakir MI, Omar AK
    Environ Monit Assess, 2016 Jul;188(7):404.
    PMID: 27295186 DOI: 10.1007/s10661-016-5394-0
    The present study deals with possible contamination of the soil by metal ions which have been affecting the environment. The concentrations of metal ions in 14 borehole samples were studied using the ICP-OES standard method. The degree of contamination was determined on the basis of single element pollution index (SEPI), combined pollution index (CPI), soil enrichment factor (SEF), and geo-accumulation index (Igeo). Geo-accumulation indices and contamination factors indicated moderate to strong contaminations for eight boreholes (BL-1, BL-2, BL-6, BL-8, BL-9, BL-10, BL-12, and BL-13) while the rest were extremely contaminated. Among all the boreholes, BL-3 and BL-11 demonstrated the highest level of Cd(II) and Pb(II) which were found the most polluted sites. The level of metal contamination was also compared with other countries. The development, variation, and limitations regarding the regulations of soil and groundwater contamination can be provided as a helpful guidance for the risk assessment of metal ions in developing countries.
  11. Oon YS, Ong SA, Ho LN, Wong YS, Oon YL, Lehl HK, et al.
    Bioprocess Biosyst Eng, 2016 Jun;39(6):893-900.
    PMID: 26894384 DOI: 10.1007/s00449-016-1568-y
    The main aim of this study is to investigate the performance of organic oxidation and denitrification of the system under long-term operation. The MFC reactor was operated in continuous mode for 180 days. Nitrate was successfully demonstrated as terminal electron acceptor, where nitrate was reduced at the cathode using electron provided by acetate oxidation at the anode. The removal efficiencies of chemical oxygen demand (COD) and nitrate were higher in the closed circuit system than in open circuit system. Both COD and nitrate reduction improved with the increase of organic loading and subsequently contributed to higher power output. The maximum nitrate removal efficiency was 88 ± 4 % (influent of 141 ± 14 mg/L). The internal resistant was 50 Ω, which was found to be low for a double chambered MFC. The maximum power density was 669 mW/m(3) with current density of 3487 mA/m(3).
  12. Oon YL, Ong SA, Ho LN, Wong YS, Oon YS, Lehl HK, et al.
    Bioresour Technol, 2015 Jun;186:270-5.
    PMID: 25836035 DOI: 10.1016/j.biortech.2015.03.014
    An innovative design of upflow constructed wetland-microbial fuel cell (UFCW-MFC) planted with cattail was used for simultaneous wastewater treatment and electricity generation. The electrodes material employed in the study was carbon felt. The main aim of this study is to assess the performance of the UFCW coupling with MFC in term of ability to treat wastewater and the capability to generate bioelectricity. The oxidation reduction potential (ORP) and dissolved oxygen (DO) profile showed that the anaerobic and aerobic regions were well developed in the lower and upper bed, respectively, of UFCW-MFC. Biodegradation of organic matter, nitrification and denitrification was investigated and the removal efficiencies of COD, NO3(-), NH4(+) were 100%, 40%, and 91%, respectively. The maximum power density of 6.12 mW m(-2) and coulombic efficiency of 8.6% were achieved at electrode spacing of anode 1 (A1) and cathode (15 cm).
  13. Chai A, Wong YS, Ong SA, Aminah Lutpi N, Sam ST, Kee WC, et al.
    Bioresour Technol, 2021 Sep;336:125319.
    PMID: 34049168 DOI: 10.1016/j.biortech.2021.125319
    A pilot scale anaerobic degradation of sugarcane vinasse was carried out at various hydraulic retention time (HRT) in the Anaerobic Suspended Growth Closed Bioreactor (ASGCB) under thermophilic temperature. The performance and kinetics were evaluated through the Haldane-Andrews model to investigate the substrate inhibition potential of sugarcane vinasse. All parameters show great performance between HRT 35 and 25 days: chemical oxygen demand (COD) reduction efficiency (81.6 to 86.8%), volatile fatty acids (VFA) reduction efficiency (92.4 to 98.5%), maximum methane yield (70%) and maximum biogas production (19.35 L/day). Furthermore, steady state values from various HRT were obtained in the kinetic evaluation for: rXmax (1.20 /day), Ks (19.95 gCOD/L), Ki (7.00 gCOD/L) and [Formula: see text] (0.33 LCH4/gCOD reduction). This study shows that anaerobic degradation of sugarcane vinasse through ASGCB could perform well at high HRT and provides a low degree of substrate inhibition as compared to existing studies from literature.
  14. Khalik WF, Ho LN, Ong SA, Wong YS, Yusoff NA, Lee SL
    J Environ Health Sci Eng, 2020 Dec;18(2):769-777.
    PMID: 33312601 DOI: 10.1007/s40201-020-00502-y
    In this study, the degradation efficiency and electricity generation of the azo dyes affected by the functional groups and molecular structure in a solar photocatalytic fuel cell (PFC) system were investigated and discussed in detail. Four different azo dyes such as, Acid Orange 7 (AO7), Acid Red 18 (AR18), Reactive Black 5 (RB5), Reactive Red 120 (RR120) with different molecular structure were evaluated. The degradation efficiency of AO7, AR18, RB5 and RR120 achieved 5.6 ± 0.3%, 11.1 ± 0.6%, 41.9 ± 0.9% and 52.1 ± 1.3%, respectively, after 6 h irradiated under solar light. In addition, the maximum power density, Pmax for AO7, AR18, RB5 and RR120 was 0.0269 ± 0.01, 0.111 ± 0.03, 1.665 ± 0.67 and 4.806 ± 1.79 mW cm-2, respectively. Meanwhile, the concentration of COD for AO7, AR18, RB5 and RR120 reduced to 16 ± 0.1, 10 ± 0.3, 7 ± 0.6 and 3 ± 0.9 mg L-1, respectively. The concentration ratio of benzene / naphthalene, benzene / azo bond and naphthalene / azo bond, respectively, was analyzed to investigate the impact of the functional groups over photodegradation of the azo dyes in PFC. Electron releasing groups (-OH and -NH2) and electron withdrawing groups (-SO3Na) which attached to the naphthalene or benzene ring also played a pivotal role in the degradation mechanism.
  15. Yusoff N, Ong SA, Ho LN, Wong YS, Saad FNM, Khalik W, et al.
    J Environ Sci (China), 2019 Jan;75:64-72.
    PMID: 30473308 DOI: 10.1016/j.jes.2018.03.001
    Hybrid growth microorganisms in sequencing batch reactors have proven effective for treating the toxic compound phenol, but the toxicity effect under different toxicity conditions has rarely been discussed. Therefore, the performance of the HG-SBR under toxic, acute and chronic organic loading can provide the overall operating conditions of the system. Toxic organic loading (TOL) was monitored during the first 7hr while introducing 50mg/L phenol to the system. The system was adversely affected with the sudden introduction of phenol to the virgin activated sludge, which caused a low degradation rate and high dissolved oxygen consumption during TOL. Acute organic loading (AOL) had significant effects at high phenol concentrations (600, 800 1000mg/L). The specific oxygen uptake rate (SOUR) gradually decreased to 4.9mg O2/(g MLVSS·hr) at 1000mg/L of phenol compared to 12.74mg O2/(g MLVSS·hr) for 200mg/L of phenol. The HG-SBR was further monitored during chronic organic loading (COL) over 67days. The effects of organic loading were more apparent at 800mg/L and 1000mg/L phenol concentrations, as the removal range was between 22%-30% and 18%-46% respectively, which indicated the severe effects of COL.
  16. Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Chai A, et al.
    Int J Environ Res, 2022;16(1):3.
    PMID: 34899925 DOI: 10.1007/s41742-021-00382-6
    Abstract: Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV-Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.

    Graphical abstract:

  17. Zainudin NF, Sam ST, Wong YS, Ismail H, Walli S, Inoue K, et al.
    Polymers (Basel), 2023 Jan 03;15(1).
    PMID: 36616587 DOI: 10.3390/polym15010237
    The ability of poly-ferric-silicate-sulphate (PFSS) synthesized via a co-polymerization process has been applied for the removal of diazo Congo red dye. A novel degradation pathway of diazo Congo red dye by using PFSS is proposed based on LC-MS analysis. Diazo Congo red dye was successfully removed using synthesized PFSS at lower coagulant dosages and a wider pH range, i.e., 9 mg/L from pH 5 to 7, 11 mg/L at pH 9, and 50 mg/L at pH 11. The azo bond cleavage was verified by the UV-Vis spectra of diazo Congo red-loaded PFSS and FTIR spectra which showed disappearance of the peak at 1584 cm-1 for -N=N- stretching vibrations. The synchronized results of UV-Vis spectra, FTIR, and the LC-MS analysis in this study confirmed the significance of the Si and Fe bond in PFSS towards the degradation of diazo Congo red dye. The successfully synthesized PFSS coagulant was characterized by FTIR, SEM, TEM, and HRTEM analysis. From this analysis, it was proven that PFSS is a polycrystalline material which is favorable for the coagulation-flocculation process. Based on all these findings, it was established that synthesized PFSS can be employed as a highly efficient polymeric coagulant for the removal of dye from wastewater.
  18. Lau YY, Wong YS, Ong SA, Lutpi NA, Sam ST, Teng TT, et al.
    Bioprocess Biosyst Eng, 2023 Mar;46(3):359-371.
    PMID: 35796867 DOI: 10.1007/s00449-022-02743-7
    The under-treated wastewater, especially remaining carcinogenic aromatic compounds in wastewater discharge has been expansively reported, wherein the efficiency of conventional wastewater treatment is identified as the primary contributor source. Herein, the advancement of wastewater treatments has drawn much attention in recent years. In the current study, combined sequential and hybridized treatment of thermolysis and coagulation-flocculation provides a novel advancement for environmental emerging pollutant (EP) prescription. This research is mainly demonstrating the mitigation efficiency and degradation pathway of pararosaniline (PRA) hybridized and combined sequential wastewater treatment. Notably, PRA degradation dominantly via a linkage of reaction: thermal cleavage, deamination, silication and diazene reduction. Thermolysis acts as an initiator for the PRA decomposition through thermally induced bond dissociation energy (BDE) for molecular fragmentation whilst coagulation-flocculation facilitates the formation of organo-bridged silsesquioxane as the final degradation product. Different from conventional treatment, the hybridized treatment showed excellent synergistic degradability by removing 99% PRA and its EPs, followed by combined sequential treatment method with 86% reduction. Comprehensive degradation pathway breakdown of carcinogenic and hardly degradable aromatic compounds provides a new insight for wastewater treatment whereby aniline and benzene are entirely undetectable in effluent. The degradation intermediates, reaction derivatives and end products were affirmed by gas chromatography-mass spectrometry, Fourier transform infrared spectroscopy and ultraviolet-visible spectrophotometry (GC-MS, FTIR and UV-Vis). This finding provides valuable guidance in establishing efficient integrated multiple-step wastewater treatments.
  19. Lau YY, Wong YS, Ang TZ, Ong SA, Lutpi NA, Ho LN
    Environ Sci Pollut Res Int, 2018 Mar;25(7):7067-7075.
    PMID: 29275478 DOI: 10.1007/s11356-017-1069-9
    The theme of present research demonstrates performance of copper (II) sulfate (CuSO4) as catalyst in thermolysis process to treat reactive black 5 (RB 5) dye. During thermolysis without presence of catalyst, heat was converted to thermal energy to break the enthalpy of chemical structure bonding and only 31.62% of color removal. With CuSO4 support as auxiliary agent, the thermally cleaved molecular structure was further destabilized and reacted with CuSO4. Copper ions functioned to delocalize the coordination of π of the lone paired electron in azo bond, C=C bond of the sp2 carbon to form C-C of the sp3 amorphous carbon in benzene and naphthalene. Further, the radicals of unpaired electrons were stabilized and RB 5 was thermally decomposed to methyl group. Zeta potential measurement was carried out to analyze the mechanism of RB 5 degradation and measurement at 0 mV verified the critical chemical concentration (CCC) (0.7 g/L copper (II) sulfate), as the maximum 92.30% color removal. The presence of copper (II) sulfate catalyst has remarkably increase the RB 5 dye degradation as the degradation rate constant without catalyst, k1 is 6.5224 whereas the degradation rate constant with catalyst, k2 is 25.6810. This revealed the correlation of conversion of thermal energy from heat to break the chemical bond strength, subsequent fragmentation of RB 5 dye molecular mediated by copper (II) sulfate catalyst. The novel framework on thermolysis degradation of molecular structure of RB 5 with respect to the bond enthalpy and interfacial intermediates decomposition with catalyst reaction were determined.
  20. Wong YS, Abidin ZZ, Musa AN, Kadir RFA, Johari B
    Respir Med Case Rep, 2023;43:101834.
    PMID: 36950023 DOI: 10.1016/j.rmcr.2023.101834
    INTRODUCTION: Unilateral pulmonary artery agenesis (UPAA) is a rare congenital malformation of the pulmonary artery due to agenesis of the sixth aortic arch during embryogenesis. Diagnosis can be challenging due to variable clinical presentations.

    CASE: A 29-year-old female at third trimester of twin pregnancy presented with massive hemoptysis. Computed tomography angiogram (CTA) showed unilateral absence of the right pulmonary artery with multiple dilated tortuous bronchial arteries supplying the right lung. Selective embolization of the bronchial artery was performed post-partum.

    CONCLUSION: Clinicians should have a high clinical suspicion of collateral artery bleeding in patients who present with unexplained hemoptysis and typical UPAA radiographic findings.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links