Displaying all 20 publications

  1. Chang KF, Fang GC, Chen JC, Wu YS
    Environ Pollut, 2006 Aug;142(3):388-96.
    PMID: 16343719
    Polycyclic aromatic hydrocarbons (PAHs) are present in both gaseous and particulate phases. These compounds are considered to be atmospheric contaminants and are human carcinogens. Many studies have monitored atmospheric particulate and gaseous phases of PAH in Asia over the past 5 years. This work compares and discusses different sample collection, pretreatment and analytical methods. The main PAH sources are traffic exhausts (AcPy, FL, Flu, PA, Pyr, CHR, BeP) and industrial emissions (BaP, BaA, PER, BeP, COR, CYC). PAH concentrations are highest in areas of traffic, followed by the urban sites, and lowest in rural sites. Meteorological conditions, such as temperature, wind speed and humidity, strongly affect PAH concentrations at all sampling sites. This work elucidates the characteristics, sources and distribution, and the healthy impacts of atmospheric PAH species in Asia.
  2. Wu YS, Looi CY, Subramaniam KS, Masamune A, Chung I
    Oncotarget, 2016 Jun 14;7(24):36719-36732.
    PMID: 27167341 DOI: 10.18632/oncotarget.9165
    Pancreatic stellate cells (PSC), a prominent stromal cell, contribute to the progression of pancreatic ductal adenocarcinoma (PDAC). We aim to investigate the mechanisms by which PSC promote cell proliferation in PDAC cell lines, BxPC-3 and AsPC-1. PSC-conditioned media (PSC-CM) induced proliferation of these cells in a dose- and time-dependent manner. Nrf2 protein was upregulated and subsequently, its transcriptional activity was increased with greater DNA binding activity and transcription of target genes. Downregulation of Nrf2 led to suppression of PSC-CM activity in BxPC-3, but not in AsPC-1 cells. However, overexpression of Nrf2 alone resulted in increased cell proliferation in both cell lines, and treatment with PSC-CM further enhanced this effect. Activation of Nrf2 pathway resulted in upregulation of metabolic genes involved in pentose phosphate pathway, glutaminolysis and glutathione biosynthesis. Downregulation and inhibition of glucose-6-phosphate-dehydrogenase with siRNA and chemical approaches reduced PSC-mediated cell proliferation. Among the cytokines present in PSC-CM, stromal-derived factor-1 alpha (SDF-1α) and interleukin-6 (IL-6) activated Nrf2 pathway to induce cell proliferation in both cells, as shown with neutralization antibodies, recombinant proteins and signaling inhibitors. Taken together, SDF-1α and IL-6 secreted from PSC induced PDAC cell proliferation via Nrf2-activated metabolic reprogramming and ROS detoxification.
  3. Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC
    Curr Cancer Drug Targets, 2019;19(2):82-100.
    PMID: 29714144 DOI: 10.2174/1568009618666180430130248
    Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
  4. Sim MS, Soga T, Pandy V, Wu YS, Parhar IS, Mohamed Z
    Metab Brain Dis, 2017 Dec;32(6):1767-1783.
    PMID: 28681200 DOI: 10.1007/s11011-017-0061-x
    Methamphetamine (METH) is a highly addictive psycho-stimulant that induces behavioral changes due to high level of METH-induced dopamine in the brain. Nucleus accumbens (NAc) plays an important role in these changes, especially in drug addiction. However, little is known about the underlying molecular mechanisms of METH-induced addiction. The objective of this study was to establish a behavioral model of METH use and addiction using escalating doses of METH over 15 days and to determine the global miRNA expression profiling in NAc of METH-addicted rats. In the behavioral study, the experimental rats were divided into 3 groups of 9 each: a control group, a single dose METH (5 mg/kg) treatment group and a continuous 15 alternate days METH (0.25, 0.5, 1, 2, 3, 4, 5 mg/kg) treatment group. Following that, six rats in each group were randomly selected for global miRNA profiling. Addiction behavior in rats was established using Conditioned Place Preference task. The analysis of the miRNA profiling in the NAc was performed using Affymetric microarray GeneChip® System. The findings indicated that a continuous 15 alternate days METH treatment rats showed a preference for the drug-paired compartment of the CPP. However, a one-time acute treatment with 5 mg/kg METH did not show any significant difference in preference when compared with controls. Differential profiling of miRNAs indicated that 166 miRNAs were up-regulated and 4 down-regulated in the chronic METH-treatment group when compared to controls. In comparing the chronic treatment group with the acute treatment group, 52 miRNAs were shown to be up-regulated and 7 were down-regulated. MiRNAs including miR-496-3p, miR-194-5p, miR-200b-3p and miR-181a-5p, were found to be significantly associated with METH addiction. Canonical pathway analysis revealed that a high number of METH addiction-related miRNAs play important roles in the MAPK, CREB, G-Protein Couple Receptor and GnRH Signaling pathways. Our results suggest that dynamic changes occur in the expression of miRNAs following METH exposure and addiction.
  5. Bonam SR, Wu YS, Tunki L, Chellian R, Halmuthur MSK, Muller S, et al.
    ChemMedChem, 2018 09 19;13(18):1854-1872.
    PMID: 29927521 DOI: 10.1002/cmdc.201800343
    Several modern treatment strategies have been adopted to combat cancer with the aim of minimizing toxicity. Medicinal plant-based compounds with the potential to treat cancer have been widely studied in preclinical research and have elicited many innovations in cutting-edge clinical research. In parallel, researchers have eagerly tried to decrease the toxicity of current chemotherapeutic agents either by combining them with herbals or in using herbals alone. The aim of this article is to present an update of medicinal plants and their bioactive compounds, or mere changes in the bioactive compounds, along with herbal edibles, which display efficacy against diverse cancer cells and in anticancer therapy. It describes the basic mechanism(s) of action of phytochemicals used either alone or in combination therapy with other phytochemicals or herbal edibles. This review also highlights the remarkable synergistic effects that arise between certain herbals and chemotherapeutic agents used in oncology. The anticancer phytochemicals used in clinical research are also described; furthermore, we discuss our own experience related to semisynthetic derivatives, which are developed based on phytochemicals. Overall, this compilation is intended to facilitate research and development projects on phytopharmaceuticals for successful anticancer drug discovery.
  6. Wu YS, Ngai SC, Goh BH, Chan KG, Lee LH, Chuah LH
    Front Pharmacol, 2017;8:761.
    PMID: 29123482 DOI: 10.3389/fphar.2017.00761
    Surfactin, a cyclic lipopeptide biosurfactant produced by various strains of Bacillus genus, has been shown to induce cytotoxicity against many cancer types, such as Ehrlich ascites, breast and colon cancers, leukemia and hepatoma. Surfactin treatment can inhibit cancer progression by growth inhibition, cell cycle arrest, apoptosis, and metastasis arrest. Owing to the potent effect of surfactin on cancer cells, numerous studies have recently investigated the mechanisms that underlie its anticancer activity. The amphiphilic nature of surfactin allows its easy incorporation nano-formulations, such as polymeric nanoparticles, micelles, microemulsions, liposomes, to name a few. The use of nano-formulations offers the advantage of optimizing surfactin delivery for an improved anticancer therapy. This review focuses on the current knowledge of surfactin properties and biosynthesis; anticancer activity against different cancer models and the underlying mechanisms involved; as well as the potential application of nano-formulations for optimal surfactin delivery.
  7. Wu YS, Chung I, Wong WF, Masamune A, Sim MS, Looi CY
    Biochim Biophys Acta Gen Subj, 2017 Feb;1861(2):296-306.
    PMID: 27750041 DOI: 10.1016/j.bbagen.2016.10.006
    BACKGROUND: We previously showed that pancreatic stellate cells (PSC) secreted interleukin (IL)-6 and promoted pancreatic ductal adenocarcinoma (PDAC) cell proliferation via nuclear factor erythroid 2 (Nrf2)-mediated metabolic reprogramming. Epithelial-mesenchymal transition (EMT) is a key process for the metastatic cascade. To study the mechanism of PDAC progression to metastasis, we investigated the role of PSC-secreted IL-6 in activating EMT and the involvement of Nrf2 in this process.

    METHODS: Gene expression of IL-6 and IL-6Rα in PSC and PDAC cells was measured with qRT-PCR. The role of PSC-secreted IL-6, JAK/Stat3 signaling, and Nrf2 mediation on EMT-related genes expression was also examined with qRT-PCR. EMT phenotypes were assessed with morphological change, wound healing, migration, and invasion.

    RESULTS: PSC expressed higher mRNA levels of IL-6 but lower IL-6Rα compared to PDAC cells. Neutralizing IL-6 in PSC secretion reduced mesenchymal-like morphology, migration and invasion capacity, and mesenchymal-like gene expression of N-cadherin, vimentin, fibronectin, collagen I, Sip1, Snail, Slug, and Twist2. Inhibition of JAK/Stat3 signaling induced by IL-6 repressed EMT and Nrf2 gene expression. Induction of Nrf2 activity by tert-butylhydroquinone (tBHQ) increased both EMT phenotypes and gene expression (N-cadherin, fibronectin, Twist2, Snail, and Slug) repressed by IL-6 neutralizing antibody. Simultaneous inhibition of Nrf2 expression with siRNA and Stat3 signaling further repressed EMT gene expression, indicating that Stat3/Nrf2 pathway mediates EMT induced by IL-6.

    CONCLUSIONS: IL-6 from PSC promotes EMT in PDAC cells via Stat3/Nrf2 pathway.

    GENERAL SIGNIFICANCE: Targeting Stat3/Nrf2 pathway activated by PSC-secreted IL-6 may provide a novel therapeutic option to improve the prognosis of PDAC.

  8. Tan JSJ, Ong KC, Ong DBL, Wu YS, Razack A, Kuppusamy S, et al.
    Malays J Pathol, 2019 Dec;41(3):243-251.
    PMID: 31901908
    INTRODUCTION: Polymorphic expression of a CAG repeat sequence in the androgen receptor (AR) gene may influence the activity of the AR and the occurrence of prostate cancer and the TMPRSS2-ERG fusion event. Furthermore, this polymorphism may be responsible for the ethnic variation observed in prostate cancer occurrence and expression of the ERG oncogene. We investigate the expression of AR and ERG in the biopsies of Malaysian men with prostate cancer and in the same patients relate this to the length of the CAG repeat sequence in their AR gene.

    MATERIALS AND METHODS: From a PSA screening initiative, 161 men were shown to have elevated PSA levels in their blood and underwent prostatic tissue biopsy. DNA was extracted from the blood, and exon 1 of the AR gene amplified by PCR and sequenced. The number of CAG repeat sequences were counted and compared to the immunohistochemical expression of ERG and AR in the matched tumour biopsies.

    RESULTS: Of men with elevated PSA, 89 were diagnosed with prostate cancer, and 72 with benign prostatic hyperplasia (BPH). There was no significant difference in the length of the CAG repeat in men with prostate cancer and BPH. The CAG repeat length was not associated with; age, PSA or tumour grade, though a longer CAG repeat was associated with tumour stage. ERG and AR were expressed in 36% and 86% of the cancers, respectively. There was no significant association between CAG repeat length and ERG or AR expression. However, there was a significant inverse relationship between ERG and AR expression. In addition, a significantly great proportion of Indian men had ERG positive tumours, compared to men of Malay or Chinese descent.

    CONCLUSIONS: CAG repeat length is not associated with prostate cancer or expression of ERG or AR. However, ERG appears to be more common in the prostate cancers of Malaysian Indian men than in the prostate cancers of other Malaysian ethnicities and its expression in this study was inversely related to AR expression.

  9. Fuloria S, Subramaniyan V, Karupiah S, Kumari U, Sathasivam K, Meenakshi DU, et al.
    Antioxidants (Basel), 2020 Nov 02;9(11).
    PMID: 33147856 DOI: 10.3390/antiox9111075
    Continuous oxidation of carbohydrates, lipids, and amino acids generate extremely reactive carbonyl species (RCS). Human body comprises some important RCS namely hexanal, acrolein, 4-hydroxy-2-nonenal, methylglyoxal, malondialdehyde, isolevuglandins, and 4-oxo-2- nonenal etc. These RCS damage important cellular components including proteins, nucleic acids, and lipids, which manifests cytotoxicity, mutagenicity, multitude of adducts and crosslinks that are connected to ageing and various chronic diseases like inflammatory disease, atherosclerosis, cerebral ischemia, diabetes, cancer, neurodegenerative diseases and cardiovascular disease. The constant prevalence of RCS in living cells suggests their importance in signal transduction and gene expression. Extensive knowledge of RCS properties, metabolism and relation with metabolic diseases would assist in development of effective approach to prevent numerous chronic diseases. Treatment approaches for RCS associated diseases involve endogenous RCS metabolizers, carbonyl metabolizing enzyme inducers, and RCS scavengers. Limited bioavailability and bio efficacy of RCS sequesters suggest importance of nanoparticles and nanocarriers. Identification of RCS and screening of compounds ability to sequester RCS employ several bioassays and analytical techniques. Present review describes in-depth study of RCS sources, types, properties, identification techniques, therapeutic approaches, nanocarriers, and their role in various diseases. This study will give an idea for therapeutic development to combat the RCS associated chronic diseases.
  10. Ramli S, Sim MS, Guad RM, Gopinath SCB, Subramaniyan V, Fuloria S, et al.
    J Oncol, 2021;2021:5519720.
    PMID: 33936199 DOI: 10.1155/2021/5519720
    The rising trend of gastrointestinal (GI) cancer has become a global burden due to its aggressive nature and poor prognosis. Long noncoding RNAs (lncRNAs) have recently been reported to be overexpressed in different GI cancers and may contribute to cancer progression and chemoresistance. They are featured with more than 200 nucleotides, commonly polyadenylated, and lacking an open reading frame. LncRNAs, particularly urothelial carcinoma-associated 1 (UCA1), are oncogenes involved in regulating cancer progression, such as cell proliferation, invasion, migration, and chemoresistance, particularly in GI cancer. This review was aimed to present an updated focus on the molecular regulatory roles and patterns of lncRNA UCA1 in progression and chemoresistance of different GI cancers, as well as deciphering the underlying mechanisms and its interactions with key molecules involved, together with a brief presentation on its diagnostic and prognostic values. The regulatory roles of lncRNA UCA1 are implicated in esophageal cancer, gastric cancer, pancreatic cancer, hepatobiliary cancer, and colorectal cancer, where they shared similar molecular mechanisms in regulating cancer phenotypes and chemoresistance. Comparatively, gastric cancer is the most intensively studied type in GI cancer. LncRNA UCA1 is implicated in biological roles of different GI cancers via interactions with various molecules, particularly microRNAs, and signaling pathways. In conclusion, lncRNA UCA1 is a potential molecular target for GI cancer, which may lead to the development of a novel chemotherapeutic agent. Hence, it also acts as a potential diagnostic and prognostic marker for GI cancer patients.
  11. Ramakrishnan P, Loh WM, Gopinath SCB, Bonam SR, Fareez IM, Mac Guad R, et al.
    Acta Pharm Sin B, 2020 Mar;10(3):399-413.
    PMID: 32140388 DOI: 10.1016/j.apsb.2019.11.008
    Activated pancreatic stellate cells (PSCs) have been widely accepted as a key precursor of excessive pancreatic fibrosis, which is a crucial hallmark of chronic pancreatitis (CP) and its formidable associated disease, pancreatic cancer (PC). Hence, anti-fibrotic therapy has been identified as a novel therapeutic strategy for treating CP and PC by targeting PSCs. Most of the anti-fibrotic agents have been limited to phase I/II clinical trials involving vitamin analogs, which are abundant in medicinal plants and have proved to be promising for clinical application. The use of phytomedicines, as new anti-fibrotic agents, has been applied to a variety of complementary and alternative approaches. The aim of this review was to present a focused update on the selective new potential anti-fibrotic agents, including curcumin, resveratrol, rhein, emodin, green tea catechin derivatives, metformin, eruberin A, and ellagic acid, in combating PSC in CP and PC models. It aimed to describe the mechanism(s) of the phytochemicals used, either alone or in combination, and the associated molecular targets. Most of them were tested in PC models with similar mechanism of actions, and curcumin was tested intensively. Future research may explore the issues of bioavailability, drug design, and nano-formulation, in order to achieve successful clinical outcomes with promising activity and tolerability.
  12. Wang Y, Guo Y, Lu J, Sun Y, Yu X, Gopinath SCB, et al.
    Nanoscale Res Lett, 2020 Feb 03;15(1):33.
    PMID: 32016709 DOI: 10.1186/s11671-020-3262-x
    Head and neck cancer is a heterogeneous disease, originating in the squamous cells lining the larynx (voice box), mouth, pharynx (throat), nasal cavity and salivary glands. Head and neck cancer diagnosis at the later stage is greatly influencing the survival rate of the patient. It makes a mandatory situation to identify this cancer at the earlier stages of development with a suitable biomarker. Squamous cell carcinoma antigen (SCC-Ag) is a circulating serum tumour biomarker, and the elevated level has been found in the head and neck cancer patients and highly correlated with the tumour volume. The present research was carried out to detect and quantify the level of SCC-Ag on titanium oxide (TiO2)-modified interdigitated electrode sensor (IDE) by SCC-Ag antibody. The detection of SCC-Ag was found at the level of 100 fM, while it was improved to 10 fM when the antibody was conjugated with gold nanostar, representing a 10-fold improvement. Interestingly, this enhancement in sensitivity is 1000-folds higher than other substrates. Moreover, the specificity analysis was carried out using two different control proteins and noticed that the antibody only recognised SCC-Ag, indicating the specific detection on IDE-TiO2 sensing surface.
  13. Muhamad Fadzil NS, Sekar M, Gan SH, Bonam SR, Wu YS, Vaijanathappa J, et al.
    Drug Des Devel Ther, 2021;15:2721-2746.
    PMID: 34188450 DOI: 10.2147/DDDT.S299753
    Swertiamarin, a seco-iridoid glycoside, is mainly found in Enicostemma littorale Blume (E. littorale) and exhibits therapeutic activities for various diseases. The present study aimed to provide a review of swertiamarin in terms of its phytochemistry, physicochemical properties, biosynthesis, pharmacology and therapeutic potential. Relevant literature was collected from several scientific databases, including PubMed, ScienceDirect, Scopus and Google Scholar, between 1990 and the present. This review included the distribution of swertiamarin in medicinal plants and its isolation, characterization, physicochemical properties and possible biosynthetic pathways. A comprehensive summary of the pharmacological activities, therapeutic potential and metabolic pathways of swertiamarin was also included after careful screening and tabulation. Based on the reported evidence, swertiamarin meets all five of Lipinski's rules for drug-like properties. Thereafter, the physicochemical properties of swertiamarin were detailed and analyzed. A simple and rapid method for isolating swertiamarin from E. littorale has been described. The present review proposed that swertiamarin may be biosynthesized by the mevalonate or nonmevalonate pathways, followed by the seco-iridoid pathway. It has also been found that swertiamarin is a potent compound with diverse pharmacological activities, including hepatoprotective, analgesic, anti-inflammatory, antiarthritis, antidiabetic, antioxidant, neuroprotective and gastroprotective activities. The anticancer activity of swertiamarin against different cancer cell lines has been recently reported. The underlying mechanisms of all these pharmacological effects are diverse and seem to involve the regulation of different molecular targets, including growth factors, inflammatory cytokines, protein kinases, apoptosis-related proteins, receptors and enzymes. Swertiamarin also modulates the activity of several transcription factors, and their signaling pathways in various pathological conditions are also discussed. Moreover, we have highlighted the toxicity profile, pharmacokinetics and possible structural modifications of swertiamarin. The pharmacological activities and therapeutic potential of swertiamarin have been extensively investigated. However, more advanced studies are required including clinical trials and studies on the bioavailability, permeability and administration of safe doses to offer swertiamarin as a novel candidate for future drug development.
  14. Wang SY, Zhao H, Xu HT, Han XD, Wu YS, Xu FF, et al.
    Front Pharmacol, 2021;12:675350.
    PMID: 34737693 DOI: 10.3389/fphar.2021.675350
    K. galanga is an aromatic medicinal herb. It is locally to India and distributed in China, Myanmar, Indonesia, Malaysia, and Thailand. K. galanga is a Traditional Chinese Herb Medicine (TCHM), which has been applied to treat cold, dry cough, toothaches, rheumatism, hypertension and so on. In addition, it has been used widely as spices since its highly aromas. The aim of this review is to compile and update the current progresses of ethnomedicinal uses, phytochemistry, pharmacology and toxicology of K. galanga. All the data on K. galanga were based on different classical literary works, multiple electronic databases including SciFinder, Web of Science, PubMed, etc. The results showed that ninety-seven compounds have been identified from rhizome of K. galanga, including terpenoids, phenolics, cyclic dipeptides, flavonoids, diarylheptanoids, fatty acids and esters. Modern pharmacology studies revealed that extracts or secondary metabolites of the herb possessed anti-inflammatory, anti-oxidant, anti-tumorous, anti-bacterial, and anti-angiogenesis effects, which were closely related to its abundant ethnomedicinal uses. In conclusion, although previous research works have provided various information of K. galanga, more in-depth studies are still necessary to systemically evaluate phytochemistry, pharmacological activities, toxicity and quality control of this herb.
  15. Guad RM, Taylor-Robinson AW, Wu YS, Gan SH, Zaharan NL, Basu RC, et al.
    BMC Nephrol, 2020 09 07;21(1):388.
    PMID: 32894076 DOI: 10.1186/s12882-020-02052-9
    BACKGROUND: New-onset diabetes after transplantation (NODAT) is associated with reduced patient and graft survival. This study examined the clinical and selected genetic factors associated with NODAT among renal-transplanted Malaysian patients.

    METHODS: This study included 168 non-diabetic patients (58% males, 69% of Chinese ethnicity) who received renal transplantation between 1st January 1994 to 31st December 2014, and were followed up in two major renal transplant centres in Malaysia. Fasting blood glucose levels were used to diagnose NODAT in patients who received renal transplantation within 1 year. Two single nucleotide polymorphisms (SNPs), namely; rs1494558 (interleukin-7 receptor, IL-7R) and rs2232365 (mannose-binding leptin-2, MBL2) were selected and genotyped using Sequenom MassArray platform. Cox proportional hazard regression analyses were used to examine the risk of developing NODAT according to the different demographics and clinical covariates, utilizing four time-points (one-month, three-months, six-months, one-year) post-transplant.

    RESULTS: Seventeen per cent of patients (n = 29, 55% males, 69% Chinese) were found to have developed NODAT within one-year of renal transplantation based on their fasting blood glucose levels. NODAT patients had renal transplantation at an older age compared to non-NODAT (39.3 ± 13.4 vs 33.9 ± 11.8 years, p = 0.03). In multivariate analysis, renal-transplanted patients who received a higher daily dose of cyclosporine (mg) were associated with increased risk of NODAT (Hazard ratio (HR) =1.01 per mg increase in dose, 95% confidence interval (CI) 1.00-1.01, p = 0.002). Other demographic (gender, ethnicities, age at transplant) and clinical factors (primary kidney disease, type of donor, place of transplant, type of calcineurin inhibitors, duration of dialysis pre-transplant, BMI, creatinine levels, and daily doses of tacrolimus and prednisolone) were not found to be significantly associated with risk of NODAT. GA genotype of rs1494558 (HR = 3.15 95% CI 1.26, 7.86) and AG genotype of rs2232365 (HR = 2.57 95% CI 1.07, 6.18) were associated with increased risk of NODAT as compared to AA genotypes.

    CONCLUSION: The daily dose of cyclosporine and SNPs of IL-7R (rs1494558) and MBL2 (rs2232365) genes are significantly associated with the development of NODAT in the Malaysian renal transplant population.

  16. Fuloria S, Subramaniyan V, Dahiya R, Dahiya S, Sudhakar K, Kumari U, et al.
    Biology (Basel), 2021 Feb 25;10(3).
    PMID: 33668707 DOI: 10.3390/biology10030172
    Evidence suggests that stem cells exert regenerative potential via the release of extracellular vesicles. Mesenchymal stem cell extracellular vesicles (MSCEVs) offer therapeutic benefits for various pathophysiological ailments by restoring tissues. Facts suggest that MSCEV action can be potentiated by modifying the mesenchymal stem cells culturing methodology and bioengineering EVs. Limited clinical trials of MSCEVs have questioned their superiority, culturing quality, production scale-up and isolation, and administration format. Translation of preclinically successful MSCEVs into a clinical platform requires paying attention to several critical matters, such as the production technique, quantification/characterization, pharmacokinetics/targeting/transfer to the target site, and the safety profile. Keeping these issues as a priority, the present review was designed to highlight the challenges in translating preclinical MSCEV research into clinical platforms and provide evidence for the regenerative potential of MSCEVs in various conditions of the liver, kidney, heart, nervous system, bone, muscle, cartilage, and other organs/tissues.
  17. Hamid UZ, Sim MS, Guad RM, Subramaniyan V, Sekar M, Fuloria NK, et al.
    Curr Mol Med, 2021 Aug 06.
    PMID: 34365949 DOI: 10.2174/1566524021666210806162848
    Gastrointestinal (GI) cancers presented an alarmingly high number of new cancer cases worldwide and highly characterised with poor prognosis. The poor overall survival is mainly due to late detection and emerging challenges in treatment, particularly chemoresistance. Thus, the identification of novel molecular targets in GI cancer is highly regarded as the main focus. Recently, long non-coding RNAs (lncRNAs) have been discovered as a potential novel molecular target for combating cancer, as it is highly associated with carcinogenesis and has a great impact on cancer progression. Amongst lncRNAs, HOTIIP has demonstrated a prominent oncogenic regulation in cancer progression, particularly in GI cancers, including oesophageal cancer, gastric cancer, hepatocellular carcinoma, pancreatic cancer and colorectal cancer. This review aimed to present a focused update on the regulatory roles of HOTTIP in GI cancer progression and chemoresistance, as well as deciphering the associated molecular mechanisms underlying their impact on cancer phenotypes and chemoresistance and the key molecules involved. It has been reported that it regulates the expression of various genes and proteins in GI cancers that impacts on the cellular functions, including proliferation, adhesion, migration and invasion, apoptosis, chemosensitivity and tumour differentiation. Furthermore, HOTTIP was also discovered to have a higher diagnostic value as compared to existing diagnostic biomarkers. In overall, HOTTIP has presented itself as a novel therapeutic target and potential diagnostic biomarker in the development of GI cancer treatment.
  18. Yap KM, Sekar M, Seow LJ, Gan SH, Bonam SR, Mat Rani NNI, et al.
    PMID: 34548817 DOI: 10.2147/BCTT.S316667
    Globally, breast cancer is the most common cancer type and is one of the most significant causes of deaths in women. To date, multiple clinical interventions have been applied, including surgical resection, radiotherapy, endocrine therapy, targeted therapy and chemotherapy. However, 1) the lack of therapeutic options for metastatic breast cancer, 2) resistance to drug therapy and 3) the lack of more selective therapy for triple-negative breast cancer are some of the major challenges in tackling breast cancer. Given the safe nature of natural products, numerous studies have focused on their anti-cancer potentials. Mangifera indica, commonly known as mango, represents one of the most extensively investigated natural sources. In this review, we provide a comprehensive overview of M. indica extracts (bark, kernel, leaves, peel and pulp) and phytochemicals (mangiferin, norathyriol, gallotannins, gallic acid, pyrogallol, methyl gallate and quercetin) reported for in vitro and in vivo anti-breast cancer activities and their underlying mechanisms based on relevant literature from several scientific databases, including PubMed, Scopus and Google Scholar till date. Overall, the in vitro findings suggest that M. indica extracts and/or phytochemicals inhibit breast cancer cell growth, proliferation, migration and invasion as well as trigger apoptosis and cell cycle arrest. In vivo results demonstrated that there was a reduction in breast tumor xenograft growth. Several potential mechanisms underlying the anti-breast cancer activities have been reported, which include modulation of oxidative status, receptors, signalling pathways, miRNA expression, enzymes and cell cycle regulators. To further explore this medicinal plant against breast cancer, future research directions are addressed. The outcomes of the review revealed that M. indica extracts and their phytochemicals may have potential benefits in the management of breast cancer in women. However, to validate its utility in the creation of innovative and potent therapeutic agents to treat breast cancer, more dedicated research, especially clinical studies are needed to explore the anti-breast cancer potentials of M. indica extracts and their phytochemicals.
  19. Wahab NWA, Guad RM, Subramaniyan V, Fareez IM, Choy KW, Bonam SR, et al.
    Curr Stem Cell Res Ther, 2021;16(5):563-576.
    PMID: 32957893 DOI: 10.2174/1574888X15999200918105623
    Stem cells can multiply into more cells with similar types in an undifferentiated form and differentiate into other types of cells. The great success and key essence of stem cell technology is the isolation of high-quality Mesenchymal Stem Cells (MSCs) with high potency, either with multipotent or pluripotent property. In this line, Stem cells from Human Exfoliated Deciduous teeth (SHEDs) are highly proliferative stem cells from dental pulp and have multipoint differentiation capacity. These cells play a pivotal role in regenerative medicine, such as cell repair associated with neurodegenerative, hepatobiliary, and pancreatic diseases. In addition, stem cell therapy has been widely used to regulate immune response and repair of tissue lesions. This overview captured the differential biological characteristics, and the potential role of stem cell technology and paid special attention to human welfare SHEDs in eliminating the above-mentioned diseases. This review provides further insights into stem cell technology by expanding the therapeutic potential of SHEDs in tissue engineering and cell organ repairs.
  20. Guad RM, Wu YS, Aung YN, Sekaran SD, Wilke ABB, Low WY, et al.
    PMID: 33922427 DOI: 10.3390/ijerph18094474
    This review provided a systematic overview of the questionnaire-related dengue studies conducted in Malaysia and evaluated their reliability and validity used in the questionnaires. An extensive literature search was conducted using various electronic databases, including PubMed, EMBASE, Medline, and ScienceDirect. Systematic reviews and meta-analysis (PRISMA) were selected as the preferred item reporting method. Out of 88 identified dengue-related, 57 published from 2000 to April 2020 met the inclusion criteria and were included. Based on the meta-analysis, a poor mean score was obtained for knowledge (49%), attitude (44%), and preventive practice (55%). The study showed that the level of knowledge on cardinal signs and modes of transmission for dengue virus were highest among health care workers, followed by students (international and local) and lastly community residents. In treatment-seeking behaviours, only half of the respondents (50.8%) would send their child to the nearest health clinics or hospitals when a child became restless or lethargic. The acceptance rate for dengue vaccine, bacteria (Wolbachia), as a vector for dengue control and self-test diagnostic kit for dengue showed considerably high (88.4%, 70%, and 44.8%, respectively). Health belief model (HBM) constructs, such as perceived barriers, perceived severity, perceived susceptibility, self-efficacy, and perceived benefit influence prevention practices. Lastly, only 23 articles (40.3%) had piloted or pretested the questionnaire before surveying, in which three reported Cronbach's alpha coefficient (0.70-0.90). A need for active participation of communities and healthcare personnel, promotion of awareness, and safe complementary medicines, as well as assessment of psychometric properties of questionnaire use in dengue surveys in Malaysia, in order for assessing dengue reliably and valid.
Related Terms
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links