Displaying publications 1 - 20 of 26 in total

Abstract:
Sort:
  1. Huh, B.P., Zafarina, Z., Zilfalil, B.A.
    MyJurnal
    The multi-racial, multi-lingual, multi-religious, and multi-cultural Malaysia is situated at the crossroads of Southeast Asia. It has a total population of about 23 million, comprising of more than fifty ethnic groups: Malays, Chinese, Indian, and the minorities of Orang Asli in Peninsular; Iban, Bidayuh, Melanau, Kenyah Kayan, Ukit, Penan, Sekapan, Lahanan, Lun Bawang, Kelabit, Berawan, Punan Bah etc. in Sarawak; and Kadazan, Bajau, Murut, Paitan, Suluk Bonggi, Illanun, Bengkahak Tidung etc. in Sabah. The origin of the multi-ethnic character of this country traces back to decades of human migration from various regions of Southeast Asia. With her rich human biodiversity, a study of the human population genetics is imperative, either for forensic database purposes, or as the stepping stone for medical applications.
  2. Azeelah AN, Zafarina Z
    Int J Legal Med, 2022 Mar;136(2):547-549.
    PMID: 34608538 DOI: 10.1007/s00414-021-02718-5
    Short tandem repeats (STRs) data for the Orang Asli population in Peninsular Malaysia is still scanty, especially for specific Orang Asli subgroups. The Orang Asli is believed as the earliest population arrived in Peninsular Malaysia about 50,000 years ago and currently makes up only 0.6% of the total population of Malaysia. This study reports the allele frequencies and several forensic statistical parameters for 15 autosomal STR loci for six Orang Asli subgroups. A total of 164 Orang Asli individuals representing the Semai, Che Wong, Orang Kanaq, Lanoh, Bateq, and Kensui subgroups were recruited for this study. This STR data will enrich the existing Malaysian autosomal STR database and will be useful for kinship testing and forensic applications.
  3. Zafarina Z, Panneerchelvam S
    Malays J Med Sci, 2009 Jul;16(3):35-40.
    PMID: 22589663 MyJurnal
    An unidentified animal species named the Jenglot and claimed to be a rare living animal species was recently found in the deep jungle of Irian Jaya, Indonesia; brought to Kuala Lumpur, Malaysia by a businessman; and exhibited in a local museum. The owner of the Jenglot carcasses had made a request to perform DNA analysis on the Jenglot to ascertain its species.
  4. Mahat NA, Zafarina Z, Jayaprakash PT
    Forensic Sci Int, 2009 Nov 20;192(1-3):19-28.
    PMID: 19671490 DOI: 10.1016/j.forsciint.2009.07.008
    The influence of rain and malathion on the initial oviposition as well as development of blowfly species infesting rabbit carcasses decomposing in sunlit and shaded habitats were studied over a period of 1 year in Kelantan, Malaysia. Chrysomya megacephala (Fabricius) was the most dominant species that infested the carcasses, followed by Chrysomya rufifacies (Macquart). In general, rain, depending on its intensity, delayed initial oviposition by 1-2 days and prolonged the pupation period by 1-3 days. The presence of malathion in the carcasses delayed initial oviposition by 1-3 days and prolonged the pupation period by 2-3 days. These findings deserve consideration while estimating postmortem interval since rain is a commonplace occurrence in Malaysia and malathion is one of the common poisons as an agent for choice to commit suicide.
  5. Mahat NA, Jayaprakash PT, Zafarina Z
    Trop Biomed, 2012 Mar;29(1):9-17.
    PMID: 22543598 MyJurnal
    The use of Chrysomya megacephala larvae for detecting malathion for diagnosing the cause of death was investigated. This could prove useful when the visceral organs have become liquefied during decomposition and therefore cannot be sampled. A field experiment was conducted in which C. megacephala were allowed to colonise naturally the corpses of rabbits that had died of malathion poisoning. The concentration of malathion increased gradually during the larval stages of C. megacephala reaching the maximum concentration in the third instar larvae. The concentration of malathion declined during prepupal stage and reached its lowest level among tenerals. The average malathion concentrations in C. megacephala growing in poisoned rabbit corpses left in a sunlit habitat were significantly higher (p<0.05) than those growing on poisoned rabbits left in a shaded habitat. The concentrations of malathion in the different stages of development of C. megacephala were moderately correlated (r = 0.51-0.69) with the administered doses as well as with those estimated in visceral organs. Thus, it would not be reliable to suggest the formulation of mathematical algorithms for relating the concentration of malathion found in the different stages of development of C. megacephala with those found in the visceral organs. However, in the context of forensic investigation, the qualitative detection of malathion in C. megacephala may prove useful in diagnosing the cause of death, since malathion is a common cause of accidental and suicidal deaths.
  6. Amila A, Acosta A, Sarmiento ME, Suraiya S, Zafarina Z, Panneerchelvam S, et al.
    Int J Mycobacteriol, 2015 Dec;4(4):341-6.
    PMID: 26964819 DOI: 10.1016/j.ijmyco.2015.06.009
    MicroRNAs (miRNAs) play an important role in diseases development. Therefore, human miRNAs may be able to inhibit the survival of Mycobacterium tuberculosis (Mtb) in the human host by targeting critical genes of the pathogen. Mutations within miRNAs can alter their target selection, thereby preventing them from inhibiting Mtb genes, thus increasing host susceptibility to the disease.
  7. Manaf SM, Panneerchelvam S, Norazmi MN, Zafarina Z, Edinur HA
    Transfus Med, 2016 May 16.
    PMID: 27197082 DOI: 10.1111/tme.12315
  8. Norhalifah HK, Zafarina Z, Sundararajulu P, Norazmi MN, Edinur HA
    Int. J. Immunogenet., 2015 Jun;42(3):200-3.
    PMID: 25809422 DOI: 10.1111/iji.12189
    In this survey, we have successfully genotyped 22 single nucleotide polymorphisms in the 13 cytokine genes for five Malay subethnic groups (Kelantan, Acheh, Mandailing, Minangkabau and Patani Malays) using polymerase chain reaction-sequence-specific primer cytokine genotyping kit (Invitrogen, Carlsbad, CA, USA). Most of the cytokine genes showed similar pattern of allelic spectra with wild-type alleles (e.g. ILIa-889/C, ILIB+3962/C and IL6 nt565/G) that represent more than 80% in the studied Malay subethnic groups. These newly observed cytokine alleles and subsequent analyses clearly indicate genetic contribution from Asia in the studied Malay subethnic groups with evidence of admixture from neighbouring populations in Patani Malays. The cytokine data sets for the five Malay subethnic groups deposited in this report can also be used as reference standard for searching suitable donor for allograft transplant and diseases association study. This is particularly relevance as our analyses showed differences between the Malay subethnic groups and other populations screened for cytokine genes.
  9. Allia S, Norazmi MN, Panneerchelvam S, Zafarina Z
    Hum Immunol, 2019 Jul;80(7):423-424.
    PMID: 30836128 DOI: 10.1016/j.humimm.2019.02.015
    "Bumiputra" or "son of the soil" is a term used to represent the Malays and other indigenous populations of Malaysia. The Malays are Austronesian speaking population and originated from different parts of the Indo-Malay Archipelago. The migration of Malay population from different parts of Indo-Malay Archipelago were mainly due to trading purposes which shaped the current Malay sub-ethnic groups with unique culture and with distinctive dialects. In this study, HLA typing was carried out using Sequence-based Typing (SBT) method on 109 individuals comprising of four Malay sub-ethnic groups namely Kelantan (n = 28), Champa (n = 29), Patani (n = 25) and Mandailing (n = 27) Malays. The HLA data is available in the Allele Frequencies Net Database (AFND).
  10. Shafie MH, Antony Dass M, Ahmad Shaberi HS, Zafarina Z
    PMID: 36647397 DOI: 10.1186/s43088-023-00342-3
    BACKGROUND: Coronavirus disease 2019 is a pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection that emerged in late 2019 and has activated an ongoing international public health emergency. SARS-CoV-2 was discovered in Wuhan, China, in December 2019 and rapidly spread to other cities and countries. Currently, SARS-CoV-2 diagnostic tests have relied heavily on detecting viral genes, antigens, and human antibodies. Hence, this review discusses and analyses the existing screening and confirmation tests for SARS-CoV-2, including the real-time reverse transcriptase polymerase chain reaction (RT-PCR), lateral flow immunoassay (LFIA), and enzyme-linked immunosorbent assay (ELISA).

    MAIN BODY: The illustrations of each testing were presented to provide the readers with an understanding of the scientific principles behind the testing methods. The comparison was made by highlighting the advantages and disadvantages of each testing. ELISA is ideal for performing the maximum population screening to determine immunological capacity, although its inability to provide reliable results on the status of the infection. Recently, LFIA has been approved as a quicker way of determining whether a patient is infected at the analysis time without using particular instruments and non-laboratory settings. RT-PCR is the gold-standard approach in terms of sensitivity and specificity.

    CONCLUSION: However, the combination of LFIA or ELISA with RT-PCR is also proposed in this review to obtain an adequate level of sensitivity and specificity.

  11. Hanis Zainal Abidin NW, Mohd Nor N, Sundararajulu P, Zafarina Z
    Am J Hum Biol, 2020 Dec 01.
    PMID: 33289243 DOI: 10.1002/ajhb.23545
    OBJECTIVES: Killer cell immunoglobulin-like receptor (KIR) genes with high polymorphism at genotypic levels are important in providing immune defense and have been expanded towards human population genetics. The aim of this study is to provide supporting information from this new biomarker to strengthen the comprehension of genetic history of the complex Malay population.

    METHODS: KIR genotyping for 213 unadmixed Malay individuals from six subethnic groups (Acheh, Bugis, Champa, Mandailing, Minang and Kedah) was carried out using PCR-SSP (sequence specific primers) method in 16 independent reactions.

    RESULTS: The most frequent KIR genotype observed is AA1, followed by AB4 and AB5. Five genotypes; AA1, AB4, AB5, AB7 and AB8 were shared among all Malay subethnic groups. The highest frequency of KIR haplotype A was observed in Minang Malays, whereas Acheh and Kedah Malays carry a balanced distribution of A and B KIR haplotypes. PCA for the KIR genes clearly illustrated six ethnogeographical population clusters; Africans, Amerindian, Northeast Asian, South Asian, Oceania and Southeast Asian populations. All six Malay subethnic groups fell within the Southeast Asian cluster.

    CONCLUSIONS: The complex array of KIR genotypes observed in the Malays indicates their historical interactions with various populations, especially with the Chinese, Indians and Orang Asli. This study has demonstrated the potential of KIR genes as a genetic marker for deducing population structure and genetic relationship between populations.

  12. NurWaliyuddin HZ, Edinur HA, Norazmi MN, Sundararajulu P, Chambers GK, Zafarina Z
    Int. J. Immunogenet., 2014 Dec;41(6):472-9.
    PMID: 25367623 DOI: 10.1111/iji.12161
    The KIR system shows variation at both gene content and allelic level across individual genome and populations. This variation reflects its role in immunity and has become a significant tool for population comparisons. In this study, we investigate KIR gene content in 120 unrelated individuals from the four Malay subethnic groups (Kelantan, Jawa, Banjar and Pattani Malays). Genotyping using commercial polymerase chain reaction-sequence-specific primer (PCR-SSP) kits revealed a total of 34 different KIR genotypes; 17 for Kelantan, 15 for Banjar, 14 for Jawa and 13 for Pattani Malays. Two new variants observed in Banjar Malays have not previously been reported. Genotype AA and haplotype A were the most common in Jawa (0.47 and 0.65, respectively), Banjar (0.37 and 0.52, respectively) and Pattani (0.40 and 0.60, respectively) Malays. In contrast, Kelantan Malays were observed to have slightly higher frequency (0.43) of genotype BB as compared with the others. Based on the KIR genes distribution, Jawa, Pattani and Banjar subethnic groups showed greater similarity and are discrete from Kelantan Malays. A principal component plot carried out using KIR gene carrier frequency shows that the four Malay subethnic groups are clustered together with other South-East Asian populations. Overall, our observation on prevalence of KIR gene content demonstrates genetic affinities between the four Malay subethnic groups and supports the common origins of the Austronesian-speaking people.
  13. Edinur HA, Zafarina Z, Spínola H, Nurhaslindawaty AR, Panneerchelvam S, Norazmi MN
    Hum Immunol, 2009 Jul;70(7):518-26.
    PMID: 19364514 DOI: 10.1016/j.humimm.2009.04.003
    In this study, human leukocyte antigen (HLA) class I and II were examined through sequence-specific primer typing in 176 unrelated individuals from six Malay subethnic groups of Peninsular Malaysia: Kelantan (n = 25), Minangkabau (34), Jawa (30), Bugis (31), Banjar (33), and Rawa (23). The most common HLA alleles in all groups were A*24 (26-41%), Cw*07 (24-32%), B*15 (22-30%), DRB1*12 (15-36%), and DQB1*03 (25-51%). The Malay subethnic groups studied demonstrated a close relationship to each other and to other Asian populations, despite specific differences between them. Banjar, Bugis, and Jawa Malays demonstrated no significant difference from each other, which could be a result of their related origin from the islands around the Java Sea. These three Malay subethnic groups were then collapsed into one group, which also helped to increase the sample number and sharpen statistical results. Minangkabau and Rawa Malays exhibited high similarities in allele group and haplotype frequencies, which could be a consequence of their common origin from Sumatera. Kelantan Malays, in addition to their statistically significant differences compared with the other groups, also exhibited differences on the most frequent haplotypes, which are almost absent in the other subethnic groups studied.
  14. Aishah ZS, Khairi MD, Normastura AR, Zafarina Z, Zilfalil BA
    J Laryngol Otol, 2008 Dec;122(12):1284-8.
    PMID: 18353197 DOI: 10.1017/S0022215108002041
    To determine the frequency and type of gap junction protein beta-2 gene mutations in Malay patients with autosomal recessive, non-syndromic hearing loss.
  15. NurWaliyuddin HZ, Norazmi MN, Edinur HA, Chambers GK, Panneerchelvam S, Zafarina Z
    PLoS One, 2015;10(11):e0141536.
    PMID: 26565719 DOI: 10.1371/journal.pone.0141536
    The aboriginal populations of Peninsular Malaysia, also known as Orang Asli (OA), comprise three major groups; Semang, Senoi and Proto-Malays. Here, we analyzed for the first time KIR gene polymorphisms for 167 OA individuals, including those from four smallest OA subgroups (Che Wong, Orang Kanaq, Lanoh and Kensiu) using polymerase chain reaction-sequence specific primer (PCR-SSP) analyses. The observed distribution of KIR profiles of OA is heterogenous; Haplotype B is the most frequent in the Semang subgroups (especially Batek) while Haplotype A is the most common type in the Senoi. The Semang subgroups were clustered together with the Africans, Indians, Papuans and Australian Aborigines in a principal component analysis (PCA) plot and shared many common genotypes (AB6, BB71, BB73 and BB159) observed in these other populations. Given that these populations also display high frequencies of Haplotype B, it is interesting to speculate that Haplotype B may be generally more frequent in ancient populations. In contrast, the two Senoi subgroups, Che Wong and Semai are displaced toward Southeast Asian and African populations in the PCA scatter plot, respectively. Orang Kanaq, the smallest and the most endangered of all OA subgroups, has lost some degree of genetic variation, as shown by their relatively high frequency of the AB2 genotype (0.73) and a total absence of KIR2DL2 and KIR2DS2 genes. Orang Kanaq tradition that strictly prohibits intermarriage with outsiders seems to have posed a serious threat to their survival. This present survey is a demonstration of the value of KIR polymorphisms in elucidating genetic relationships among human populations.
  16. Tasnim AR, Allia S, Edinur HA, Panneerchelvam S, Zafarina Z, Norazmi MN
    Hum Immunol, 2016 Aug;77(8):618-619.
    PMID: 27296326 DOI: 10.1016/j.humimm.2016.06.009
    The earliest settlers in Peninsular Malaysia are the Orang Asli population, namely Semang, Senoi and Proto Malays. In the present study, we typed the HLA-A, -B and -DRB1 loci of the Kensiu and Semai Orang Asli sub-groups. Sequence-based HLA typing was performed on 59 individuals from two Orang Asli sub-groups. A total of 11, 18 and 14 HLA-A, -B and -DRB1 alleles were identified, respectively. These data are available in the Allele Frequencies Net Database under the population name "Malaysia Kedah Kensiu" and "Malaysia Pahang Semai".
  17. Wan Syafawati WU, Norhalifah HK, Zefarina Z, Zafarina Z, Panneerchelvam S, Norazmi MN, et al.
    Transfus Med, 2015 Oct;25(5):326-32.
    PMID: 26132409 DOI: 10.1111/tme.12220
    The major aims of this study are to characterise and compile allelic data of human platelet antigen (HPA)-1 to -6 and -15 systems in five Malay sub-ethnic groups in Peninsular Malaysia.
  18. Abd Gani R, Manaf SM, Zafarina Z, Panneerchelvam S, Chambers GK, Norazmi MN, et al.
    Transfus Apher Sci, 2015 Aug;53(1):69-73.
    PMID: 25819336 DOI: 10.1016/j.transci.2015.03.009
    In this study we genotyped ABO, Rhesus, Kell, Kidd and Duffy blood group loci in DNA samples from 120 unrelated individuals representing four Malay subethnic groups living in Peninsular Malaysia (Banjar: n = 30, Jawa: n = 30, Mandailing: n = 30 and Kelantan: n = 30). Analyses were performed using commercial polymerase chain reaction-sequence specific primer (PCR-SSP) typing kits (BAG Health Care GmbH, Lich, Germany). Overall, the present study has successfully compiled blood group datasets for the four Malay subethnic groups and used the datasets for studying ancestry and health.
  19. Nur Haslindawaty AR, Panneerchelvam S, Edinur HA, Norazmi MN, Zafarina Z
    Int J Legal Med, 2010 Sep;124(5):415-26.
    PMID: 20502908 DOI: 10.1007/s00414-010-0469-x
    The uniparentally inherited mitochondrial DNA (mtDNA) is in the limelight for the past two decades, in studies relating to demographic history of mankind and in forensic kinship testing. In this study, human mtDNA hypervariable segments 1, 2, and 3 (HV1, HV2, and HV3) were analyzed in 248 unrelated Malay individuals in Peninsular Malaysia. Combined analyses of HV1, HV2, and HV3 revealed a total of 180 mtDNA haplotypes with 149 unique haplotypes and 31 haplotypes occurring in more than one individual. The genetic diversity was estimated to be 99.47%, and the probability of any two individuals sharing the same mtDNA haplotype was 0.93%. The most frequent mtDNA haplotype (73, 146, 150, 195, 263, 315.1C, 16140, 16182C, 16183C, 16189, 16217, 16274, and 16335) was shared by 11 (4.44%) individuals. The nucleotide diversity and mean of pair-wise differences were found to be 0.036063 ± 0.020101 and 12.544022 ± 6.230486, respectively.
  20. SharifahNany RahayuKarmilla S, Aedrianee AR, Nur Haslindawaty AR, Nur Azeelah A, Panneerchelvam S, Norazmi MN, et al.
    Int J Legal Med, 2018 Jul;132(4):1087-1090.
    PMID: 29052042 DOI: 10.1007/s00414-017-1697-0
    Peninsular Malaysia is populated by the Malays, Chinese, Indians, and Orang Asli. We have analyzed 17 Y-STRs loci for 243 randomly unrelated individuals, which include 153 Malays (7 Acheh, 13 Champa, 11 Rawa, 9 Kedah, 23 Minang, 15 Bugis, 43 Kelantan, 14 Jawa, and 18 Bugis) and 90 Orang Asli [54 Semang (16 Kensiu, 13 Lanoh, 25 Bateq); 30 Senoi (21 Semai, 9 Che Wong); and 6 Proto-Malay (6 Orang Kanaq)] from selected settlements in Peninsular Malaysia using the AmpFlSTR Yfiler™ kit (Applied Biosystems™). The overall haplotype diversity is 0.9966, i.e., 0.9984 for the Malays and 0.9793 for the Orang Asli. A total of 158 haplotypes (65.02%) were individually unique. The p value and pairwise Rst analysis was calculated to show the genetic structure of the samples with other world populations (from YHRD website). Based on the Y-STR data, Champa, Acheh, Kedah, Minang, and Kelantan are clustered together. Lanoh and Kensiu (Semang) are very closely related, suggesting similar paternal ancestry. Jawa Malays and Indonesian Java, plus the Bugis Malays and Australian Aborigines shared high degree of paternal lineage affinity. This study presents data for very precious relict groups, who are the earliest inhabitants of Peninsular Malaysia.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links