METHODS: The sample was obtained from a total of 574 adolescent patients (172 males and 402 females) diagnosed with depression following the DSM-IV/ICD-10 diagnostic criteria; patients who also had other severe mental or physical illnesses were excluded. The ages of participants ranged from 10 to 19 years. Additionally, independent t-test and one-way ANOVA were used to examine differences in symptoms between different gender and age groups. The LPA was used to examine whether females and males were having different patterns of symptoms.
RESULTS: Our analysis showed that compared to males, females exhibited higher rates of depression and more severe depressive symptoms across age groups. Likewise, the analysis also revealed an earlier onset of depression among Chinese adolescents compared to that in Western countries in previous studies. Finally, the LPA showed that mild to moderate depression was predominant in male patients, while severe depression was predominant in female patients.
CONCLUSION: This study highlights the gender differences in the prevalence and severity of depressive symptoms in Chinese adolescents. The current study highlighted the importance of gender equality and developing gender-friendly interventions in maintaining the overall mental health of adolescents in China.
METHODS: Electronic databases (Scopus, PubMed/Medline, Web of Science, Embase and Google Scholar) were searched for relevant literature published up to February 2020.
RESULTS: Twenty-four qualified trials were included in this meta-analysis. It was found that serum IGF-1 levels were significantly increased in the DHEA group compared to the control (weighted mean differences (WMD): 16.36 ng/ml, 95% CI: 8.99, 23.74; p = .000). Subgroup analysis revealed that a statistically significant increase in serum IGF-1 levels was found only in women (WMD: 23.30 ng/ml, 95% CI: 13.75, 32.87); in participants who supplemented 50 mg/d DHEA (WMD: 15.75 ng/ml, 95% CI: 7.61, 23.89); in participants undergoing DHEA intervention for >12 weeks (WMD: 17.2 ng/ml, 95% CI: 8.02, 26.22); in participants without an underlying comorbidity (WMD: 19.11 ng/ml, 95% CI: 10.69, 27.53); and in participants over the age of 60 years (WMD: 19.79 ng/ml, 95% CI: 9.86, 29.72).
CONCLUSION: DHEA supplementation may increase serum IGF-I levels especially in women and older subjects. However, further studies are warranted before DHEA can be recommended for clinical use.
METHOD: MEDLINE/PubMed, Scopus and Web of sciences were investigated to identify relevant articles up to June 2019. The search strategy combined the Medical Subject Heading and Title and/or abstract keywords. The combined effect sizes were calculated as weight mean difference (WMD) using the random-effects model. Between study heterogeneity was evaluated by the Cochran's Q test and I2.
RESULTS: Four RCTs studies investigated Carnosine use versus any control for at least 2 weeks were identified and analyzed. Overall results from the random-effects model on included studies, with 184 participants, indicated that carnosine intervention reduced HbA1C levels in intervention vs control groups (WMD: -0.92 %, 95 % CI: -1.20, -0.63, I2:69 %). Four studies, including a total of 183 participants, reported TG changes as an outcome measure variable, but combined results did not show significant reduction in this outcome (WMD: -14.46 mg/dl, 95 % CI: -29.11, 0.19, I2:94 %). Furthermore, combined results did not show any significant change in HOMA-IR, Cholesterol, fasting blood sugar, or HDL-C.
CONCLUSION: Carnosine supplementation results in a decrease in HbA1C, but elicits no effect on HOMA-IR, Cholesterol, fasting blood sugar, TG and HDL-C. Future studies with a larger sample sizes, varied doses of carnosine, and population-specific sub-groups are warranted to confirm, and enhance, the veracity of our findings.
METHODS: We analyzed by digital droplet PCR (ddPCR) to determine presence of the MYD88 L265P and CD79B Y196 hotspot mutations in cfDNA isolated from plasma of 24 PCNSL patients with active disease. Corresponding tumor samples were available for 14 cases. Based on the false positive rate observed in 8 healthy control samples, a stringent cut-off for the MYD88 L265P and CD79B Y196 mutation were set at 0.3% and 0.5%, respectively.
RESULTS: MYD88 L265P and CD79B Y196 mutations were detected in 9/14 (64%) and 2/13 (15%) tumor biopsies, respectively. In cfDNA samples, the MYD88 L265P mutation was detected in 3/24 (12.5%), while the CD79B Y196 mutation was not detected in any of the 23 tested cfDNA samples. Overall, MYD88 L265P and/or CD79B Y196 were detected in cfDNA in 3/24 cases (12.5%). The detection rate of the combined analysis did not improve the single detection rate for either MYD88 L265P or CD79B Y196.
CONCLUSION: The low detection rate of MYD88 L265P and CD79B Y196 mutations in cfDNA in the plasma of PCNSL patients argues against its use in routine diagnostics. However, detection of MYD88 L265P by ddPCR in cfDNA in the plasma could be considered in challenging cases.
METHODS: We adopted a cross-sectional study design through an online survey platform to enquire opinions of transition practices from expert representatives in 7 SEA countries.
RESULTS: Regionally, 3 out 7 countries reported having no practice of transition care. Among cited challenges were reluctant adaptation by patients and caregivers to unfamiliarized adult healthcare systems, inadequate ratio of adult immunologists to patients and lack of facilities for transfer.
DISCUSSION AND CONCLUSION: Our study provides evidence to advocate policy makers on the importance of standardized integration of transition practice towards betterment of transiting PID patients into adulthood.