Displaying all 9 publications

  1. Murali V, Ong SA, Ho LN, Wong YS, Hamidin N
    Water Environ Res, 2013 Mar;85(3):270-7.
    PMID: 23581242
    Microbial fuel cells (MFCs) represent an emerging technology that focuses on power generation and effluent treatment. This review compiles articles related to MFCs using azo dye as the substrate. The significance of the general components in MFCs and systems of MFCs treating azo dye is depicted in this review. In addition, degradation of azo dyes such as Congo red, methyl orange, active brilliant red X-3B, amaranth, reactive blue 221, and acid orange 7 in MFCs are summarized. Further exploration and operational modification are suggested to address the challenges of complete removal of azo dye with maximum power generation in an MFC. In addition, a sequential treatment system with MFCs is suggested for complete mineralization of azo dye.
    Matched MeSH terms: Amaranth Dye/chemistry
  2. Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL
    Environ Sci Pollut Res Int, 2023 Mar;30(12):34363-34377.
    PMID: 36512276 DOI: 10.1007/s11356-022-24647-5
    Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
    Matched MeSH terms: Amaranth Dye*
  3. Lehl HK, Ong SA, Ho LN, Wong YS, Saad FNM, Oon YL, et al.
    Int J Phytoremediation, 2017 Aug 03;19(8):725-731.
    PMID: 28448169 DOI: 10.1080/15226514.2017.1284748
    The objective of this study is to determine the reduction efficiency of Chemical Oxygen Demand (COD) as well as the removal of color and Amaranth dye metabolites by the Aerobic-anaerobic Baffled Constructed Wetland Reactor (ABCW). The ABCW reactor was planted with common reed (Phragmite australis) where the hydraulic retention time (HRT) was set to 1 day and was fed with synthetic wastewater with the addition of Amaranth dye. Supplementary aeration was supplied in designated compartments of the ABCW reactor to control the aerobic and anaerobic zones. After Amaranth dye addition the COD reduction efficiency dropped from 98 to 91% while the color removal efficiency was 100%. Degradation of azo bond in Amaranth dye is shown by the UV-Vis spectrum analysis which demonstrates partial degradation of Amaranth dye metabolites. The performance of the baffled unit is due to the longer pathway as there is the up-flow and down-flow condition sequentially, thus allowing more contact of the wastewater with the rhizomes and micro-aerobic zones.
    Matched MeSH terms: Amaranth Dye/chemistry*
  4. Kardi SN, Ibrahim N, Darzi GN, Rashid NAA, Villaseñor J
    Environ Sci Pollut Res Int, 2017 Aug;24(23):19444-19457.
    PMID: 28580546 DOI: 10.1007/s11356-017-9204-1
    This work studied the performance of a laboratory-scale microbial fuel cell (MFC) using a bioanode that consisted of treated clinoptilolite fine powder coated onto graphite felt (TC-MGF). The results were compared with another similar MFC that used a bare graphite felt (BGF) bioanode. The anode surfaces provided active sites for the adhesion of the bacterial consortium (NAR-2) and the biodegradation of mono azo dye C.I. Acid Red 27. As a result, bioelectricity was generated in both MFCs. A 98% decolourisation rate was achieved using the TC-MGF bioanode under a fed-batch operation mode. Maximum power densities for BGF and TC-MGF bioanodes were 458.8 ± 5.0 and 940.3 ± 4.2 mW m-2, respectively. GC-MS analyses showed that the dye was readily degraded in the presence of the TC-MGF bioanode. The MFC using the TC-MGF bioanode showed a stable biofilm with no biomass leached out for more than 300 h operation. In general, MFC performance was substantially improved by the fabricated TC-MGF bioanode. It was also found that the TC-MGF bioanode with the stable biofilm presented the nature of exopolysaccharide (EPS) structure, which is suitable for the biodegradation of the azo dye. In fact, the EPS facilitated the shuttling of electrons to the bioanode for the generation of bioelectricity.
    Matched MeSH terms: Amaranth Dye/isolation & purification*; Amaranth Dye/metabolism
  5. Nguyen HT, Lee J, Kwon E, Lisak G, Thanh BX, Oh WD, et al.
    J Colloid Interface Sci, 2021 Jun;591:161-172.
    PMID: 33601102 DOI: 10.1016/j.jcis.2021.01.108
    While Cobalt nanoparticles (Co NPs) are useful for catalytic Oxone activation, it is more advantageous to embed/immobilize Co NPs on nitrogen-doped carbon substrates to provide synergy for enhancing catalytic performance. Herein, this study proposes to fabricate such a composite by utilizing covalent organic frameworks (COF) as a precursor. Through complexation of COF with Co, a stable product of Co-complexed COF (Co-COF) can be synthesized. This Co-COF is further converted through pyrolysis to N-doped carbon in which cobaltic NPs are embedded. Owing to its well-defined structures of Co-COF, the pyrolysis process transforms COF into N-doped carbon with a bubble-like morphology. Such Co NP-embedded N-doped carbon nanobubbles (CoCNB) with pores, magnetism and Co, shall be a promising catalyst. Thus, CoCNB shows a much stronger catalytic activity than commercial Co3O4 NPs to activate Oxone to degrade toxic Amaranth dye (AMD). CoCNB-activated Oxone also achieves a significantly lower Ea value of AMD degradation (i.e., 27.9 kJ/mol) than reported Ea values in previous literatures. Besides, CoCNB is still effective for complete elimination of AMD in the presence of high-concentration NaCl and surfactants, and CoCNB is also reusable over five consecutive cycles.
    Matched MeSH terms: Amaranth Dye
  6. Chong, P.H., Yusof, Y.A., Aziz, M.G., Mohd. Nazli, N., Chin, N.L., Syed Muhammad, S.K.
    The present study was aimed at assessing the effect of solvents on the yield and the color properties of amaranth extract. Two species of amaranth namely Amaranthus gangeticus and Amaranthus blitum were extracted with water, methanol and ethanol. Seven parameters like betacyanin content, total soluble solids, lightness (L*), redness (a*), yellowness (b*), hue angle (h*) and chroma (c*) were analyzed to assess extraction efficiency. Correlation analysis was carried out to assess the linear association among the analytical variables. Principal component analysis was used to establish the relationships between the different analytical variables and to detect the most important factors of variability. Among the two varieties, Amaranthus gangeticus extract contained about two and half time more betacyanin with half of total soluble solids compared to Amaranthus blitum. Water is the best as solvent for extracting betacyanin from Amaranthus gangeticus and ethanol in case of Amaranthus blitum. Among the analytical parameters, a* and c* were perfectly correlated. Three principal components were found among the seven analytical variables accounting 88% of total variability. The first principal components mostly reflected the redness (a*), whereas the second principal components reflected the betacyanin content, total soluble solids and lightness (L* value).
    Matched MeSH terms: Amaranth Dye
  7. Alwash AH, Abdullah AZ, Ismail N
    J Hazard Mater, 2012 Sep 30;233-234:184-93.
    PMID: 22831996 DOI: 10.1016/j.jhazmat.2012.07.021
    A new heterogeneous catalyst for sonocatalytic degradation of amaranth dye in water was synthesized by introducing titania into the pores of zeolite (NaY) through ion exchange method while Fe (III) was immobilized on the encapsulated titanium via impregnation method. XRD results could not detect any peaks for titanium oxide or Fe(2)O(3) due to its low loading. The UV-vis analysis proved a blue shift toward shorter wavelength after the loading of Ti into NaY while a red shift was detected after the loading of Fe into the encapsulated titanium. Different reaction variables such as TiO(2) content, amount of Fe, pH values, amount of hydrogen peroxide, catalyst loading and the initial dye concentration were studied to estimate their effect on the decolorization efficiency of amaranth. The maximum decolorization efficiency achieved was 97.5% at a solution pH of 2.5, catalyst dosage of 2 g/L, 20 mmol/100 mL of H(2)O(2) and initial dye concentration of 10 mg/L. The new heterogeneous catalyst Fe/Ti-NaY was a promising catalyst for this reaction and showed minimum Fe leaching at the end of the reaction.
    Matched MeSH terms: Amaranth Dye/chemistry*
  8. Nordin N, Ho LN, Ong SA, Ibrahim AH, Lee SL, Ong YP
    Chemosphere, 2019 Jan;214:614-622.
    PMID: 30292044 DOI: 10.1016/j.chemosphere.2018.09.144
    The hybrid system of photocatalytic fuel cell - peroxi-coagulation (PFC-PC) is a sustainable and green technology to degrade organic pollutants and generate electricity simultaneously. In this study, three different types of photocatalysts: TiO2, ZnO and α-Fe2O3 were immobilized respectively on carbon cloth (CC), and applied as photoanodes in the photocatalytic fuel cell of this hybrid system. Photocatalytic fuel cell was employed to drive a peroxi-coagulation process by generating the external voltage accompanying with degrading organic pollutants under UV light irradiation. The degradation efficiency of Amaranth dye and power output in the hybrid system of PFC-PC were evaluated by applying different photoanode materials fabricated in this study. In addition, the effect of light on the photocurrent of three different photoanode materials was investigated. In the absence of light, the reduction of photocurrent percentage was found to be 69.7%, 17.3% and 93.2% in TiO2/CC, ZnO/CC and α-Fe2O3/CC photoanodes, respectively. A maximum power density (1.17 mWcm-2) and degradation of dye (93.8%) at PFC reactor were achieved by using ZnO/CC as photoanode. However, the different photoanode materials at PFC showed insignificant difference in dye degradation trend in the PC reactor. Meanwhile, the degradation trend of Amaranth at PFC reactor was influenced by the recombination rate, electron mobility and band gap energy of photocatalyst among different photoanode materials.
    Matched MeSH terms: Amaranth Dye/metabolism*
  9. Nordin N, Ho LN, Ong SA, Ibrahim AH, Wong YS, Lee SL, et al.
    Environ Sci Pollut Res Int, 2017 Oct;24(29):23331-23340.
    PMID: 28840563 DOI: 10.1007/s11356-017-9964-7
    A novel sustainable hybrid system of photocatalytic fuel cell (PFC) and Fenton process is an alternative wastewater treatment technology for energy-saving and efficient treatment of organic pollutants. The electrons generated from PFC photoanode are used to produce H2O2 in the Fenton reactor and react with the in situ generation of Fe2+ from sacrificial iron for hydroxyl radical formation. In this study, the effect of different initial Amaranth dye concentrations on degradation and electricity generation were investigated. ZnO/Zn photoanode was prepared by anodizing method and characterized by X-ray diffraction (XRD) and scanning electron microscope (SEM). Results revealed that the maximum power density (9.53 mW/m2) and current density (0.0178 mA/m2) were achieved at 10 mg/L of Amaranth. The correlation between dye degradation, voltage output, and kinetic photocatalytic degradation were also investigated and discussed.
    Matched MeSH terms: Amaranth Dye
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links