METHODS: The prevalence of G6PD deficiency among 408 Thai participants diagnosed with malaria by microscopy (71), and malaria-negative controls (337), was assessed using a phenotypic test based on water-soluble tetrazolium salts. High-resolution melting (HRM) curve analysis was developed from a previous study to enable the detection of 15 common missense, synonymous and intronic G6PD mutations in Asian populations. The identified mutations were subjected to biochemical and structural characterisation to understand the molecular mechanisms underlying enzyme deficiency.
RESULTS: Based on phenotypic testing, the prevalence of G6PD deficiency (T) and intronic (c.1365-13T>C and c.486-34delT) mutations was detected with intermediate to normal enzyme activity. The double missense mutations were less catalytically active than their corresponding single missense mutations, resulting in severe enzyme deficiency. While the mutations had a minor effect on binding affinity, structural instability was a key contributor to the enzyme deficiency observed in G6PD-deficient individuals.
CONCLUSIONS: With varying degrees of enzyme deficiency, G6PD genotyping can be used as a complement to phenotypic screening to identify those who are eligible for 8-aminoquinolines. The information gained from this study could be useful for management and treatment of malaria, as well as for the prevention of unanticipated reactions to certain medications and foods in the studied population.
METHODS: Imiquimod-loaded fish oil bigel colloidal system was prepared using a blend of carbopol hydrogel and fish oil oleogel. Bigels were first characterized for their mechanical properties and compared to conventional gel systems. Ex vivo permeation studies were performed on murine skin to analyze the ability of the bigels to transport drug across skin and to predict the release mechanism via mathematical modelling. Furthermore, to analyze pharmacological effectiveness in skin cancer and controlling imiquimod-induced inflammatory side effects, imiquimod-fish oil combination was tested in vitro on epidermoid carcinoma cells and in vivo in Swiss albino mice cancer model.
RESULTS: Imiquimod-loaded fish oil bigels exhibited higher drug availability inside the skin as compared to individual imiquimod hydrogel and oleogel controls through quasi-Fickian diffusion mechanism. Imiquimod-fish oil combination in bigel enhanced the antitumor effects and significantly reduced serum pro-inflammatory cytokine levels such as tumor necrosis factor-alpha and interleukin-6, and reducing tumor progression via inhibition of vascular endothelial growth factor. Imiquimod-fish oil combination also resulted in increased expression of interleukin-10, an anti-inflammatory cytokine, which could also aid anti-tumor activity against skin cancer.
CONCLUSION: Imiquimod administration through a bigel vehicle along with fish oil could be beneficial for controlling imiquimod-induced inflammatory side effects and in the treatment of skin cancer.
Objective: To provide an update on the current understanding, evaluation, and management of penile warts.
Methods: A PubMed search was completed in Clinical Queries using the key terms 'penile warts' and 'genital warts'. The search strategy included meta-analyses, randomized controlled trials, clinical trials, observational studies, and reviews.
Results: Penile warts are caused by human papillomavirus (HPV), notably HPV-6 and HPV-11. Penile warts typically present as asymptomatic papules or plaques. Lesions may be filiform, exophytic, papillomatous, verrucous, hyperkeratotic, cerebriform, fungating, or cauliflower-like. Approximately one-third of penile warts regress without treatment and the average duration prior to resolution is approximately 9 months. Active treatment is preferable to watchful observation to speed up clearance of the lesions and to assuage fears of transmission and autoinoculation. Patient-administered therapies include podofilox (0.5%) solution or gel, imiquimod 3.75 or 5% cream, and sinecatechins (polypheron E) 15% ointment. Clinician-administered therapies include podophyllin, cryotherapy, bichloroacetic or trichloroacetic acid, oral cimetidine, surgical excision, electrocautery, and carbon dioxide laser therapy. Patients who do not respond to first-line treatments may respond to other therapies or a combination of treatment modalities. Second-line therapies include topical/intralesional/intravenous cidofovir, topical 5-fluorouracil, and topical ingenol mebutate.
Conclusion: No single treatment has been shown to be consistently superior to other treatment modalities. The choice of the treatment method should depend on the physician's comfort level with the various treatment options, the patient's preference and tolerability of treatment, and the number and severity of lesions. The comparative efficacy, ease of administration, adverse effects, cost, and availability of the treatment modality should also be taken into consideration.