Displaying publications 1 - 20 of 66 in total

Abstract:
Sort:
  1. Abd Karim NA, Adam AHB, Jaafaru MS, Rukayadi Y, Abdull Razis AF
    Molecules, 2023 Apr 04;28(7).
    PMID: 37049977 DOI: 10.3390/molecules28073214
    Inhibition of several protein pathways involved in cancer cell regulation is a necessary key in the discovery of cancer chemotherapy. Moringa oleifera Lam is often used in traditional medicine for the treatment of various illnesses. The plant contains glucomoringin isothiocyanate (GMG-ITC) with therapeutic potential against various cancer cells. Therefore, GMG-ITC was evaluated for its cytotoxicity against the PC-3 prostate cancer cell line and its potential to induce apoptosis. GMG-ITC inhibited cell proliferation in the PC-3 cell line with IC50 value 3.5 µg/mL. Morphological changes as a result of GMG-ITC-induced apoptosis showed chromatin condensation, nuclear fragmentation, and membrane blebbing. Additionally, Annexin V assay showed proportion of cells in early and late apoptosis upon exposure to GMG-ITC in a time-dependent manner. Moreover, GMG-ITC induced a time-dependent G2/M phase arrest, with reduction of 39.1% in the PC-3 cell line. GMG-ITC also activates apoptotic genes including caspase, tumor suppressor gene (p53), Akt/MAPK, and Bax of the proapoptotic Bcl family. Early apoptosis proteins (JNK, Bad, Bcl2, and p53) were significantly upregulated upon GMG-ITC treatment. It is concluded that apoptosis induction was observed in PC-3 cells treated with GMG-ITC. These phenomena suggest that GMG-ITC from M. oleifera seeds could be useful as a future cytotoxic agent against prostate cancer.
    Matched MeSH terms: Apoptosis/genetics
  2. Yang B, Wang Q, Li Y, Li L, Zhang Y, Leong Bin Abdullah MFI, et al.
    PLoS One, 2023;18(4):e0282488.
    PMID: 37099528 DOI: 10.1371/journal.pone.0282488
    OBJECTIVE: The present study opted for the adrenal phaeochromocytoma (PC12) cell line to frame a neuronal injury model induced by alcohol exposure in vitro, aiming to probe whether TAp73 and miR-96-5p are involved in the neuronal injury process induced by alcohol and elucidate the regulatory relationship between miR-96-5p and TAp73.

    METHODS: Immunofluorescence staining was used to observe the structural features of PC12 cells after culturing in medium with nerve growth factor (NGF). After different doses and different durations of alcohol treatment, CCK-8 assay was performed to detect the viability of PC12 cells, flow cytometry assay was carried out to detect the apoptosis rate of PC12 cells, dual-luciferase reporter assay was used to definitude the regulatory relationship between miR-96-5p and Tp73, and western blot was used to detect the protein expression of TAp73.

    RESULTS: The result of immunofluorescence staining demonstrated that PC12 cells abundantly expressed Map2, CCK-8 assay illustrated alcohol exposure significantly downregulated the cell viability of PC12 cells, Treatment with miR-96-5p inhibitor induced apoptosis and upregulated the expression of TAp73 in PC12 cells. Contrastingly, miR-96-5p mimic reversed the above effects and downregulation of TAp73 inhibited the apoptosis of PC12 cells.

    CONCLUSION: The present study demonstrated that miR-96-5p participates in alcohol-induced apoptosis in PC12 cells via negatively regulating TAp73.

    Matched MeSH terms: Apoptosis/genetics
  3. Li X, Hou Q, Yuan W, Zhan X, Yuan H
    J Orthop Surg Res, 2023 Dec 01;18(1):916.
    PMID: 38041147 DOI: 10.1186/s13018-023-04412-1
    BACKGROUND: Intervertebral disc degeneration (IDD) is the main pathogenesis of low back pain. MicroRNAs (miRNAs) have been found to exert regulatory function in IDD. This study aimed to investigate the effect and potential mechanism of miR-96-5p in IDD.

    METHODS: In vitro cell model of IDD was established by treating human nucleus pulposus cells (HNPCs) with interleukin-1β (IL-1β). The level of peroxisome proliferator-activated receptor γ (PPARγ) was examined in the IDD cell model by Western blot and quantification real-time reverse transcription-polymerase chain reaction (qRT-PCR). The expression level of miR-96-5p was detected by RT-qPCR. Effects of PPARγ or/and PPARγ agonist on inflammatory factors, extracellular matrix (ECM), apoptosis, and nuclear factor-kappaB (NF-κB) nuclear translocation were examined through enzyme-linked immunosorbent assay (ELISA), Western blot, flow cytometry assay, and immunofluorescence staining. The Starbase database and dual luciferase reporter assay were used to predict and validate the targeting relationship between miR-96-5p and PPARγ, and rescue assay was performed to gain insight into the role of miR-96-5p on IDD through PPARγ/NF-κB signaling.

    RESULTS: PPARγ expression reduced with concentration and time under IL-1β stimulation, while miR-96-5p expression showed the reverse trend (P 

    Matched MeSH terms: Apoptosis/genetics
  4. Tung J, Tew LS, Hsu YM, Khung YL
    Sci Rep, 2017 04 11;7(1):793.
    PMID: 28400564 DOI: 10.1038/s41598-017-00912-3
    Measuring at ~30 nm, a fully customizable holliday junction DNA nanoconstruct, was designed to simultaneously carry three unmodified SiRNA strands for apoptosis gene knockout in cancer cells without any assistance from commercial transfection kits. In brief, a holliday junction structure was intelligently designed to present one arm with a cell targeting aptamer (AS1411) while the remaining three arms to carry different SiRNA strands by means of DNA/RNA duplex for inducing apoptosis in cancer cells. By carrying the three SiRNA strands (AKT, MDM2 and Survivin) into triple negative breast MDA-MB-231 cancer cells, cell number had reduced by up to ~82% within 24 hours solely from one single administration of 32 picomoles. In the immunoblotting studies, up-elevation of phosphorylated p53 was observed for more than 8 hours while the three genes of interest were suppressed by nearly half by the 4-hour mark upon administration. Furthermore, we were able to demonstrate high cell selectivity of the nanoconstruct and did not exhibit usual morphological stress induced from liposomal-based transfection agents. To the best of the authors' knowledge, this system represents the first of its kind in current literature utilizing a short and highly customizable holliday DNA junction to carry SiRNA for apoptosis studies.
    Matched MeSH terms: Apoptosis/genetics*
  5. Vijayarathna S, Sasidharan S
    Asian Pac J Cancer Prev, 2014;15(13):5499-500.
    PMID: 25041025
    Matched MeSH terms: Apoptosis/genetics*
  6. Tan SC, Ankathil R
    Tumour Biol., 2015 Sep;36(9):6633-44.
    PMID: 26242271 DOI: 10.1007/s13277-015-3868-2
    Cervical cancer is a common malignancy which poses a significant health burden among women, especially those living in the developing countries. Although human papillomavirus (HPV) infection has been unequivocally implicated in the etiopathogenesis of the cancer, it alone is not adequate to contribute to the malignant transformation of cervical cells. Most HPV infections regress spontaneously, and only a small proportion of women have persistent infections which eventually lead to malignancy. This suggests that interplays between HPV infection and other cofactors certainly exist during the process of cervical carcinogenesis, which synergistically contribute to the differential susceptibility of an individual to the malignancy. Undoubtedly, host genetic factors represent a major element involved in such a synergistic interaction, and accumulating evidence suggests that polymorphisms in apoptosis-related genes play an important role in the genetic susceptibility to cervical cancer. This review consolidates the recent literatures on the role of common polymorphisms in apoptosis-related genes in genetic susceptibility to cervical cancer.
    Matched MeSH terms: Apoptosis/genetics*
  7. Sahtout AH, Hassan MD, Shariff M
    Dis Aquat Organ, 2001 Mar 9;44(2):155-9.
    PMID: 11324818
    Fifty black tiger shrimp Penaeus monodon from commercial cultivation ponds in Malaysia were examined by Tdt-mediated dUTP nick-end labeling (TUNEL) fluorescence assay and agarose gel electrophoresis of DNA extracts for evidence of DNA fragmentation as an indicator of apoptosis. From these specimens, 30 were grossly normal and 20 showed gross signs of white spot syndrome virus (WSSV) infection. Of the 30 grossly normal shrimp, 5 specimens were found to be positive for WSSV infection by normal histology and by nested polymerase chain reaction (PCR) analysis. All of the specimens showing gross signs of WSSV infection were positive for WSSV by normal histology, while 5 were positive by nested PCR only (indicating light infections) and 15 were positive by 1-step PCR (indicating heavy infections). Typical histological signs of WSSV infection included nuclear hypertrophy, chromatin condensation and margination. None of the 25 grossly normal shrimp negative for WSSV by 1-step PCR showed any signs of DNA fragmentation by TUNEL assay or agarose gel electrophoresis of DNA extracts. The 10 specimens that gave PCR-positive results for WSSV by nested PCR only (i.e., 5 grossly normal shrimp and 5 grossly positive for WSSV) gave mean counts of 16 +/- 8% TUNEL-positive cells, while the 25 specimens PCR positive by 1-step PCR gave mean counts of 40 +/- 7% TUNEL-positive cells. Thus, the number of TUNEL positive cells present in tissues increased with increasing severity of infection, as determined by gross signs of white spots on the cuticle, the number of intranuclear inclusions in histological sections, and results from single and nested PCR assays. DNA extracts of PCR-positive specimens tested by agarose gel electrophoresis showed indications of DNA fragmentation either as smears or as 200 bp ladders. Given that DNA fragmentation is generally considered to be a hallmark of apoptosis, the results suggested that apoptosis might be implicated in shrimp death caused by WSSV.
    Matched MeSH terms: Apoptosis/genetics*
  8. Chan WH, Mohamad MS, Deris S, Zaki N, Kasim S, Omatu S, et al.
    Comput Biol Med, 2016 10 01;77:102-15.
    PMID: 27522238 DOI: 10.1016/j.compbiomed.2016.08.004
    Incorporation of pathway knowledge into microarray analysis has brought better biological interpretation of the analysis outcome. However, most pathway data are manually curated without specific biological context. Non-informative genes could be included when the pathway data is used for analysis of context specific data like cancer microarray data. Therefore, efficient identification of informative genes is inevitable. Embedded methods like penalized classifiers have been used for microarray analysis due to their embedded gene selection. This paper proposes an improved penalized support vector machine with absolute t-test weighting scheme to identify informative genes and pathways. Experiments are done on four microarray data sets. The results are compared with previous methods using 10-fold cross validation in terms of accuracy, sensitivity, specificity and F-score. Our method shows consistent improvement over the previous methods and biological validation has been done to elucidate the relation of the selected genes and pathway with the phenotype under study.
    Matched MeSH terms: Apoptosis/genetics
  9. Cheng KJ, Alshawsh MA, Mejia Mohamed EH, Thavagnanam S, Sinniah A, Ibrahim ZA
    Cell Oncol (Dordr), 2020 Apr;43(2):177-193.
    PMID: 31677065 DOI: 10.1007/s13402-019-00477-5
    BACKGROUND: In recent years, the high mobility group box-1 (HMGB1) protein, a damage-associated molecular pattern (DAMP) molecule, has been found to play multifunctional roles in the pathogenesis of colorectal cancer. Although much attention has been given to the diagnostic and prognostic values of HMGB1 in colorectal cancer, the exact functional roles of the protein as well as the mechanistic pathways involved have remained poorly defined. This systematic review aims to discuss what is currently known about the roles of HMGB1 in colorectal cancer development, growth and progression, and to highlight critical areas for future investigations. To achieve this, the bibliographic databases Pubmed, Scopus, Web of Science and ScienceDirect were systematically screened for articles from inception till June 2018, which address associations of HMGB1 with colorectal cancer.

    CONCLUSIONS: HMGB1 plays multiple roles in promoting the pathogenesis of colorectal cancer, despite a few contradicting studies. HMGB1 may differentially regulate disease-related processes, depending on the redox status of the protein in colorectal cancer. Binding of HMGB1 to various protein partners may alter the impact of HMGB1 on disease progression. As HMGB1 is heavily implicated in the pathogenesis of colorectal cancer, it is crucial to further improve our understanding of the functional roles of HMGB1 not only in colorectal cancer, but ultimately in all types of cancers.

    Matched MeSH terms: Apoptosis/genetics
  10. Singh B, Maiti GP, Zhou X, Fazel-Najafabadi M, Bae SC, Sun C, et al.
    Arthritis Rheumatol, 2021 Dec;73(12):2303-2313.
    PMID: 33982894 DOI: 10.1002/art.41799
    OBJECTIVE: In a recent genome-wide association study, a significant genetic association between rs34330 of CDKN1B and risk of systemic lupus erythematosus (SLE) in Han Chinese was identified. This study was undertaken to validate the reported association and elucidate the biochemical mechanisms underlying the effect of the variant.

    METHODS: We performed an allelic association analysis in patients with SLE, followed by a meta-analysis assessing genome-wide association data across 11 independent cohorts (n = 28,872). In silico bioinformatics analysis and experimental validation in SLE-relevant cell lines were applied to determine the functional consequences of rs34330.

    RESULTS: We replicated a genetic association between SLE and rs34330 (meta-analysis P = 5.29 × 10-22 , odds ratio 0.84 [95% confidence interval 0.81-0.87]). Follow-up bioinformatics and expression quantitative trait locus analysis suggested that rs34330 is located in active chromatin and potentially regulates several target genes. Using luciferase and chromatin immunoprecipitation-real-time quantitative polymerase chain reaction, we demonstrated substantial allele-specific promoter and enhancer activity, and allele-specific binding of 3 histone marks (H3K27ac, H3K4me3, and H3K4me1), RNA polymerase II (Pol II), CCCTC-binding factor, and a critical immune transcription factor (interferon regulatory factor 1 [IRF-1]). Chromosome conformation capture revealed long-range chromatin interactions between rs34330 and the promoters of neighboring genes APOLD1 and DDX47, and effects on CDKN1B and the other target genes were directly validated by clustered regularly interspaced short palindromic repeat (CRISPR)-based genome editing. Finally, CRISPR/dead CRISPR-associated protein 9-based epigenetic activation/silencing confirmed these results. Gene-edited cell lines also showed higher levels of proliferation and apoptosis.

    CONCLUSION: Collectively, these findings suggest a mechanism whereby the rs34330 risk allele (C) influences the presence of histone marks, RNA Pol II, and IRF-1 transcription factor to regulate expression of several target genes linked to proliferation and apoptosis. This process could potentially underlie the association of rs34330 with SLE.

    Matched MeSH terms: Apoptosis/genetics*
  11. Li W, Wang F, Wang X, Xu W, Liu F, Hu R, et al.
    J Biochem Mol Toxicol, 2024 Feb;38(2):e23645.
    PMID: 38348716 DOI: 10.1002/jbt.23645
    Prostate cancer (PCa) is an extremely common genitourinary malignancy among elderly men. Many evidence have shown the efficacy of curcumin (CUR) in inhibiting the progression of PCa. However, the pharmacological function of CUR in PCa is still not quite clear. In this research, CUR was found to suppress the proliferation and enhance the apoptotic rate in in vitro PCa cell models in a dose- and time-dependent manner. In a xenograft animal model, the administration of CUR contributed to a significant decrease in the growth of the xenograft tumor induced by the transplanted PC-3 cells. Ubiquitin-conjugating enzyme E2 C is implicated in the modulation of multiple types of cancers. In humans, the expression levels of UBE2C are significantly higher in PCa versus benign prostatic hyperplasia. Treatment with CUR decreased the expression of UBE2C, whereas it increased miR-483-3p expression. In contrast with the control mice, the CUR-treated mice showed a significant reduction in UBE2C and Ki-67 in PCa cells. The capability of proliferation, migration, and invasion of PCa cells was inhibited by the knockdown of UBE2C mediated by siRNA. Furthermore, dual luciferase reporter gene assay indicated the binding of miR-483-3p to UBE2C. In summary, CUR exerts its antitumor effects through regulation of the miR-483-3p/UBE2C axis by decreasing UBE2C and increasing miR-483-3p. The findings may also provide new molecular markers for PCa diagnosis and treatment.
    Matched MeSH terms: Apoptosis/genetics
  12. Othman N, Nagoor NH
    Biomed Res Int, 2014;2014:318030.
    PMID: 24999473 DOI: 10.1155/2014/318030
    Lung cancer remains to be one of the most common and serious types of cancer worldwide. While treatment is available, the survival rate of this cancer is still critically low due to late stage diagnosis and high frequency of drug resistance, thus highlighting the pressing need for a greater understanding of the molecular mechanisms involved in lung carcinogenesis. Studies in the past years have evidenced that microRNAs (miRNAs) are critical players in the regulation of various biological functions, including apoptosis, which is a process frequently evaded in cancer progression. Recently, miRNAs were demonstrated to possess proapoptotic or antiapoptotic abilities through the targeting of oncogenes or tumor suppressor genes. This review examines the involvement of miRNAs in the apoptotic process of lung cancer and will also touch on the promising evidence supporting the role of miRNAs in regulating sensitivity to anticancer treatment.
    Matched MeSH terms: Apoptosis/genetics*
  13. Su Q, Chen K, Ren J, Zhang Y, Han X, Leong SW, et al.
    J Mol Med (Berl), 2024 Dec;102(12):1471-1484.
    PMID: 39420137 DOI: 10.1007/s00109-024-02496-8
    Non-small cell lung cancer (NSCLC) is a highly malignant tumor with a poor prognosis. Hypoxia conditions affect multiple cellular processes promoting the adaptation and progression of cancer cells via the activation of hypoxia-inducible factors (HIF) and subsequent transcription activation of their target genes. Preliminary studies have suggested that estrogen receptor β (ERβ) might play a promoting role in the progression of NSCLC. However, the precise mechanisms, particularly its connection to HIF-1α-mediated modulation under hypoxia, remain unclear. Our findings demonstrated that the overexpression of ERβ, not ERα, increased cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. Tissue microarray staining revealed a strong correlation between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in CoCl2-induced hypoxia, 1% O2 incubation, or HIF-1α overexpressing cells. ChIP identified HIF-1α binding to a hypoxia response element in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the tumor growth, thus emphasizing the promising prospects of targeting HIF-1α and ERβ as a therapeutic approach for the treatment of NSCLC. KEY MESSAGES: ERβ, not ERα, increases cell proliferation and inhibition of apoptosis in NSCLC cells and xenografts. A strong correlation exists between the protein expression of HIF-1α and ERβ. HIF-1α induced ERβ gene transcription and protein expression in hypoxic cells via binding to HRE in the ESR2 promoter. The suppression of HIF-1α and ERβ both in vitro and in vivo effectively reduced the NSCLC tumor growth.
    Matched MeSH terms: Apoptosis/genetics
  14. Vijayarathna S, Gothai S, Jothy SL, Chen Y, Kanwar JR, Sasidharan S
    Asian Pac J Cancer Prev, 2015;16(17):7435-9.
    PMID: 26625740
    A failure of a cell to self destruct has long been associated with cancer progression and development. The fact that tumour cells may not instigate cell arrest or activate cell death mechanisms upon cancer drug delivery is a major concern. Autophagy is a mechanism whereby cell material can be engulfed and digested while apoptosis is a self-killing mechanism, both capable of hindering multiplication after cell injury. In particular situations, autophagy and apoptosis seem to co-exist simultaneously or interdependently with the aid of mutual proteins. This review covers roles of microRNAs and chemopreventive agents and makes an attempt at outlining possible partnerships in maximizing cancer cell death with minimal normal cell damage.
    Matched MeSH terms: Apoptosis/genetics
  15. Haris K, Ismail S, Idris Z, Abdullah JM, Yusoff AA
    Asian Pac J Cancer Prev, 2014;15(11):4499-505.
    PMID: 24969876
    Glioblastoma, the most aggressive and malignant form of glioma, appears to be resistant to various chemotherapeutic agents. Hence, approaches have been intensively investigated to targeti specific molecular pathways involved in glioblastoma development and progression. Aloe emodin is believed to modulate the expression of several genes in cancer cells. We aimed to understand the molecular mechanisms underlying the therapeutic effect of Aloe emodin on gene expression profiles in the human U87 glioblastoma cell line utilizing microarray technology. The gene expression analysis revealed that a total of 8,226 gene alterations out of 28,869 genes were detected after treatment with 58.6 μg/ml for 24 hours. Out of this total, 34 genes demonstrated statistically significant change (p<0.05) ranging from 1.07 to 1.87 fold. The results revealed that 22 genes were up-regulated and 12 genes were down-regulated in response to Aloe emodin treatment. These genes were then grouped into several clusters based on their biological functions, revealing induction of expression of genes involved in apoptosis (programmed cell death) and tissue remodelling in U87 cells (p<0.01). Several genes with significant changes of the expression level e.g. SHARPIN, BCAP31, FIS1, RAC1 and TGM2 from the apoptotic cluster were confirmed by quantitative real-time PCR (qRT-PCR). These results could serve as guidance for further studies in order to discover molecular targets for the cancer therapy based on Aloe emodin treatment.
    Matched MeSH terms: Apoptosis/genetics
  16. Pai YJ, Abdullah NL, Mohd-Zin SW, Mohammed RS, Rolo A, Greene ND, et al.
    PMID: 22945349 DOI: 10.1002/bdra.23072
    Adhesion and fusion of epithelial sheets marks the completion of many morphogenetic events during embryogenesis. Neural tube closure involves an epithelial fusion sequence in which the apposing neural folds adhere initially via cellular protrusions, proceed to a more stable union, and subsequently undergo remodeling of the epithelial structures to yield a separate neural tube roof plate and overlying nonneural ectoderm. Cellular protrusions comprise lamellipodia and filopodia, and studies in several different systems emphasize the critical role of RhoGTPases in their regulation. How epithelia establish initial adhesion is poorly understood but, in neurulation, may involve interactions between EphA receptors and their ephrinA ligands. Epithelial remodeling is spatially and temporally correlated with apoptosis in the dorsal neural tube midline, but experimental inhibition of this cell death does not prevent fusion and remodeling. A variety of molecular signaling systems have been implicated in the late events of morphogenesis, but genetic redundancy, for example among the integrins and laminins, makes identification of the critical players challenging. An improved understanding of epithelial fusion can provide insights into normal developmental processes and may also indicate the mode of origin of clinically important birth defects.
    Matched MeSH terms: Apoptosis/genetics
  17. Nesaretnam K, Meganathan P
    Ann N Y Acad Sci, 2011 Jul;1229:18-22.
    PMID: 21793834 DOI: 10.1111/j.1749-6632.2011.06088.x
    Inflammation is an organism's response to environmental assaults. It can be classified as acute inflammation that leads to therapeutic recovery or chronic inflammation, which may lead to the development of cancer and other ailments. Genetic changes that occur within cancer cells themselves are responsible for many aspects of cancer development but are dependent on ancillary processes for tumor promotion and progression. Inflammation has long been associated with the development of cancer. The distinct characteristics of cancer cells to proliferate, metastasize, evade apoptotic signals, and develop chemoresistance have been linked to the inflammatory response. Due to the involvement of multiple genes and various pathways, current drugs that target single genes have not been effective in providing a therapeutic cure. On the other hand, natural products target multiple genes and therefore have better success compared to drugs. Tocotrienols, the potent isoforms of vitamin E, are such a natural product. This review will discuss the relationship between cancer and inflammation with particular focus on the roles played by NF-κB, STAT3, and COX-2.
    Matched MeSH terms: Apoptosis/genetics
  18. Abu Bakar F, Yeo CC, Harikrishna JA
    Int J Mol Sci, 2016 Apr 20;17(4).
    PMID: 27104531 DOI: 10.3390/ijms17040321
    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.
    Matched MeSH terms: Apoptosis/genetics
  19. Tan SN, Sim SP
    BMC Med Genomics, 2019 01 15;12(1):9.
    PMID: 30646906 DOI: 10.1186/s12920-018-0465-4
    BACKGROUND: It has been found that chronic rhinosinusitis (CRS) increases the risk of developing nasopharyngeal carcinoma (NPC). CRS can be caused by gastro-oesophageal reflux (GOR) that may reach nasopharynx. The major component of refluxate, bile acid (BA) has been found to be carcinogenic and genotoxic. BA-induced apoptosis has been associated with various cancers. We have previously demonstrated that BA induced apoptosis and gene cleavages in nasopharyngeal epithelial cells. Chromosomal cleavage occurs at the early stage of both apoptosis and chromosome rearrangement. It was suggested that chromosome breaks tend to cluster in the region containing matrix association region/scaffold attachment region (MAR/SAR). This study hypothesised that BA may cause chromosome breaks at MAR/SAR leading to chromosome aberrations in NPC. This study targeted the AF9 gene located at 9p22 because 9p22 is a deletion hotspot in NPC.

    METHODS: Potential MAR/SAR sites were predicted in the AF9 gene by using MAR/SAR prediction tools. Normal nasopharyngeal epithelial cells (NP69) and NPC cells (TWO4) were treated with BA at neutral and acidic pH. Inverse-PCR (IPCR) was used to identify chromosome breaks in SAR region (contains MAR/SAR) and non-SAR region (does not contain MAR/SAR). To map the chromosomal breakpoints within the AF9 SAR and non-SAR regions, DNA sequencing was performed.

    RESULTS: In the AF9 SAR region, the gene cleavage frequencies of BA-treated NP69 and TWO4 cells were significantly higher than those of untreated control. As for the AF9 non-SAR region, no significant difference in cleavage frequency was detected between untreated and BA-treated cells. A few breakpoints detected in the SAR region were mapped within the AF9 region that was previously reported to translocate with the mixed lineage leukaemia (MLL) gene in an acute lymphoblastic leukaemia (ALL) patient.

    CONCLUSIONS: Our findings suggest that MAR/SAR may be involved in defining the positions of chromosomal breakages induced by BA. Our report here, for the first time, unravelled the relation of these BA-induced chromosomal breakages to the AF9 chromatin structure.

    Matched MeSH terms: Apoptosis/genetics
  20. Sarmadi VH, Ahmadloo S, Boroojerdi MH, John CM, Al-Graitte SJR, Lawal H, et al.
    Cell Transplant, 2020 2 7;29:963689719885077.
    PMID: 32024378 DOI: 10.1177/0963689719885077
    Treatment of leukemia has become much difficult because of resistance to the existing anticancer therapies. This has thus expedited the search for alternativ therapies, and one of these is the exploitation of mesenchymal stem cells (MSCs) towards control of tumor cells. The present study investigated the effect of human umbilical cord-derived MSCs (UC-MSCs) on the proliferation of leukemic cells and gauged the transcriptomic modulation and the signaling pathways potentially affected by UC-MSCs. The inhibition of growth of leukemic tumor cell lines was assessed by proliferation assays, apoptosis and cell cycle analysis. BV173 and HL-60 cells were further analyzed using microarray gene expression profiling. The microarray results were validated by RT-qPCR and western blot assay for the corresponding expression of genes and proteins. The UC-MSCs attenuated leukemic cell viability and proliferation in a dose-dependent manner without inducing apoptosis. Cell cycle analysis revealed that the growth of tumor cells was arrested at the G0/G1 phase. The microarray results identified that HL-60 and BV173 share 35 differentially expressed genes (DEGs) (same expression direction) in the presence of UC-MSCs. In silico analysis of these selected DEGs indicated a significant influence in the cell cycle and cell cycle-related biological processes and signaling pathways. Among these, the expression of DBF4, MDM2, CCNE2, CDK6, CDKN1A, and CDKN2A was implicated in six different signaling pathways that play a pivotal role in the anti-tumorigenic activity exerted by UC-MSCs. The UC-MSCs perturbate the cell cycle process of leukemic cells via dysregulation of tumor suppressor and oncogene expression.
    Matched MeSH terms: Apoptosis/genetics
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links