Displaying all 10 publications

Abstract:
Sort:
  1. Tan HS, Liddell S, Ong Abdullah M, Wong WC, Chin CF
    J Proteomics, 2016 06 30;143:334-345.
    PMID: 27130535 DOI: 10.1016/j.jprot.2016.04.039
    Oil palm tissue culture is one way to produce superior oil palm planting materials. However, the low rate of embryogenesis is a major hindrance for the adoption of this technology in oil palm tissue culture laboratories. In this study, we use proteomic technologies to compare differential protein profiles in leaves from palms of high and low proliferation rates in tissue culture in order to understand the underlying biological mechanism for the low level of embryogenesis. Two protein extraction methods, namely trichloroacetic acid/acetone precipitation and polyethylene glycol fractionation were used to produce total proteins and fractionated protein extracts respectively, with the aim of improving the resolution of protein species using two-dimensional gel electrophoresis. A total of 40 distinct differential abundant protein spots were selected from leaf samples collected from palms with proven high and low proliferation rates. The variant proteins were subsequently identified using mass spectrometric analysis. Twelve prominent protein spots were then characterised using real-time polymerase chain reaction to compare the mRNA expression and protein abundant profiles. Three proteins, namely triosephosphate isomerase, l-ascorbate peroxidase, and superoxide dismutase were identified to be potential biomarker candidates at both the protein abundant and mRNA expression levels.

    BIOLOGICAL SIGNIFICANCE: In this study, proteomic analysis was used to identify abundant proteins from total protein extracts. PEG fractionation was used to reveal lower abundant proteins from both high and low proliferation embryogenic lines of oil palm samples in tissue culture. A total of 40 protein spots were found to be significant in abundance and the mRNA levels of 12 of these were assessed using real time PCR. Three proteins namely, triosephosphate isomerase, l-ascorbate peroxidase and superoxide dismutase were found to be concordant in their mRNA expression and protein abundance. Triosephosphate isomerase is a key enzyme in glycolysis. Both l-ascorbate peroxidase and superoxide dismutase play a role in anti-oxidative scavenging defense systems. These proteins have potential for use as biomarkers to screen for high and low embryogenic oil palm samples.

    Matched MeSH terms: Ascorbate Peroxidases/analysis; Ascorbate Peroxidases/genetics
  2. ONG G, YAP C, MAZIAH M, TAN S
    Sains Malaysiana, 2013;42:1549-1555.
    This study was carried out by using Centella asiatica grown using a hydroponic system under laboratory conditions to study synergistic and antagonistic effects of Zn bioaccumulation with added Pb and the changes in antioxidant activities in leaves and roots of C. asiatica. The antioxidant activities included superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and guaiacol peroxidase (GPX). The treatments Zn (2 ppm) + Pb (0.4 ppm) and Zn (4 ppm) + Pb (0.6 ppm) increased the accumulation of Zn in leaves by 14.06 and 16.84%, respectively, but decreased by 7.36% uptake in roots (Zn 4 ppm + Pb 0.6 ppm). This showed that Pb and Zn acted synergistically to Zn accumulation in leaves but antagonistically in roots. CAT and SOD activities in leaves were increased when Zn was added together with Pb. In roots, CAT, APX and SOD activities were increased but GPX was decreased. Owing to their sensitivities to Zn with Pb, SOD and CAT could be used as biomarkers to monitor the toxicity of Pb and Zn exposure in the leaves and roots of C. asiatica.
    Matched MeSH terms: Ascorbate Peroxidases
  3. Tan CK, Ali ZM, Ismail I, Zainal Z
    ScientificWorldJournal, 2012;2012:474801.
    PMID: 22919322 DOI: 10.1100/2012/474801
    The objective of the present study was to simultaneously evaluate the effect of a postharvest treatment on the pepper's antioxidant content and its ability to retain its economical value during the postharvest period. The fruits were pretreated by modified atmosphere packaging (MAP) with or without treatment with 1-methylcyclopropene (1-MCP) before cold storage at 10°C. Changes in the levels of non-enzymatic antioxidants, including the total phenolic, ascorbic acid levels and the total glutathione level, as well as enzymatic antioxidants, including ascorbate peroxidase (APX), glutathione reductase (GR), and catalase (CAT), were determined. Both treatments successfully extended the shelf life of the fruit for up to 25 days, and a high level of antioxidant capacity was maintained throughout the storage period. However, 1-MCP treatment maintained the high antioxidant capacity for a longer period of time. The 1-MCP-treated peppers maintained high levels of phenolic content, a high reduced glutathione (GSH)/oxidised glutathione (GSSG) ratio, decreased levels of ascorbic acid and CAT activity, and increased levels of APX and GR compared with the peppers that were not treated with 1-MCP. The overall results suggested that a combination of 1-MCP and MAP was the most effective treatment for extending shelf life while retaining the nutritional benefits.
    Matched MeSH terms: Ascorbate Peroxidases/metabolism
  4. Khor, Soo Ping, Rahmad Zakaria, Subramaniam, Sreeramanan
    Trop Life Sci Res, 2016;27(11):139-143.
    MyJurnal
    Throughout the cryopreservation process, plants were exposed to a series of
    abiotic stresses such as desiccation and osmotic pressure due to highly concentrated
    vitrification solution. Abiotic stress stimulates the production of reactive oxygen species
    (ROS) which include hydrogen peroxide, superoxide radicals, and singlet oxygen. Higher
    production of ROS may lead to oxidative stress which contributes to the major injuries in
    cryopreserved explants. Antioxidant enzymes in plant such as ascorbate peroxidase
    (APX) can protect plants from cell damage by scavenging the free radicals. This study was
    determined based on APX enzyme activity of Aranda Broga Blue orchid’s protocorm-like
    bodies (PLBs) in response to PVS2 (Plant Vitrification Solution 2) cryopreservation
    treatments at different stages. PLBs that were precultured at 0.25 M sucrose for 3 days
    were subjected to vitrification cryopreservation method. Results obtained showed that the
    highest APX activity was achieved at PVS2 cryoprotectant treatment prior liquid nitrogen
    (LN) storage. This phenomenon indicating that accumulation of osmotic and dehydrating
    stress throughout the cryopreservation treatment resulted in oxidative burst which in turn
    leads to higher APX activity in order to control the excess production of ROS. To
    conclude, PVS2 treatment was revealed as the most detrimental step throughout
    cryopreservation treatment. Thus, this research also suggested that exogenous
    antioxidant such as ascorbic acid can be added throughout cryopreservation procedure
    especially at PVS2 treatment in the future experiments to aid in regrowth of cryopreserved
    explants by reducing oxidative stress.
    Matched MeSH terms: Ascorbate Peroxidases
  5. James Antony JJ, Zakaria S, Zakaria R, Anak Ujang J, Othman N, Subramaniam S
    Physiol Mol Biol Plants, 2019 Nov;25(6):1457-1467.
    PMID: 31736548 DOI: 10.1007/s12298-019-00703-2
    Dendrobium Sabin Blue is an important orchid hybrid that has been grown extensively as cut flower, potted plant and is also popular for its deep purplish blue flowers.  The most efficient long term conservation method of this hybrid is through cryopreservation. Cryopreservation involving the vitrification method consists of explants exposure to highly concentrated cryoprotective solution followed by freezing rapidly in liquid nitrogen. However, these treatments involved highly concentrated cryoprotectant that could incur toxicity to the explants. Hence, cryopreservation protocol requires biochemical analyses in understanding the damages or injuries occurred during cryopreservation treatments. In this study, biochemical analyses revealed a general reduction in chlorophyll, carotenoid and porphyrin content to 0.40 µg/g F W (thawing stage), 31.50 µg/g F W unloading stage and 2230.41 µg/g F W (thawing stage), respectively in comparison to the control treatments. In addition, increased level in proline content were obtained at different cryopreservation stages with highest level (5.42 µmole/g F W) recorded at the PVS2 dehydration stage. Fluctuated outcomes were obtained in catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POX) enzyme activities in PLBs exposed to different cryopreservation stages. Lowest values recorded for CAT enzyme activity were obtained at the dehydration stage (3.94 U/g). Lowest POX enzyme activities were obtained at the dehydration (122.36 U/g) and growth recovery (106.40 U/g) stages. Additionally, lowest APX enzyme activities values were recorded at the thawing (7.47 U/g) and unloading (7.28 U/g) stages. These have contributed to low regeneration of Dendrobium Sabin Blue protocorm like bodies (PLBs) following cryopreservation. Hence, in the future experimental design, exogenous antioxidant could be included in the cryopreservation procedures to improve the existing protocol.
    Matched MeSH terms: Ascorbate Peroxidases
  6. Ghulam Hasan Abbasi, Javaid Akhtar, Muhammad Anwar-ul-haq, Moazzam Jamil, Shafaqat Ali, Rafiq Ahmad, et al.
    Sains Malaysiana, 2016;45:177-184.
    Effects of NaCl salinity and cadmium on the anti-oxidative activity of enzymes like superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), glutathione reductase (GR) and lipid peroxidation contents; malondialdehyde (MDA) were studied in two maize hybrids of different salt tolerance characteristics. An increase in the amount of lipid peroxidation indicated the oxidative stress induced by NaCl and Cd. The results also depicted that NaCl stress caused an increase in the activities of POD, SOD, CAT, APX and GR while cadmium stress increased the activities of POD, SOD and APX but showed no significant effect on CAT and GR in both the studied hybrids. The combined effect of salinity and cadmium on these parameters was higher than that of sole effect of either NaCl or Cd. It was also found that maize hybrid 26204 had better tolerance against both stresses with strong antioxidant system as compared to that of maize hybrid 8441. A comparison of the antioxidants and lipid peroxidation in two maize hybrids having varying level of NaCl and Cd stress tolerance corroborated the importance of reactive oxygen species (ROS) in defense against abiotic stresses.
    Matched MeSH terms: Ascorbate Peroxidases
  7. Ma NL, Che Lah WA, Abd Kadir N, Mustaqim M, Rahmat Z, Ahmad A, et al.
    PLoS One, 2018;13(2):e0192732.
    PMID: 29489838 DOI: 10.1371/journal.pone.0192732
    Salinity threat is estimated to reduce global rice production by 50%. Comprehensive analysis of the physiological and metabolite changes in rice plants from salinity stress (i.e. tolerant versus susceptible plants) is important to combat higher salinity conditions. In this study, we screened a total of 92 genotypes and selected the most salinity tolerant line (SS1-14) and most susceptible line (SS2-18) to conduct comparative physiological and metabolome inspections. We demonstrated that the tolerant line managed to maintain their water and chlorophyll content with lower incidence of sodium ion accumulation. We also examined the antioxidant activities of these lines: production of ascorbate peroxidase (APX) and catalase (CAT) were significantly higher in the sensitive line while superoxide dismutase (SOD) was higher in the tolerant line. Partial least squares discriminant analysis (PLS-DA) score plots show significantly different response for both lines after the exposure to salinity stress. In the tolerant line, there was an upregulation of non-polar metabolites and production of sucrose, GABA and acetic acid, suggesting an important role in salinity adaptation. In contrast, glutamine and putrescine were noticeably high in the susceptible rice. Coordination of different strategies in tolerant and susceptible lines show that they responded differently after exposure to salt stress. These findings can assist crop development in terms of developing tolerance mechanisms for rice crops.
    Matched MeSH terms: Ascorbate Peroxidases/metabolism
  8. Ibrahim MH, Jaafar HZ
    Molecules, 2013 Jul 05;18(7):7957-76.
    PMID: 23884129 DOI: 10.3390/molecules18077957
    An experiment was conducted to investigate and distinguish the relationships in the production of total phenolics, total flavonoids, soluble sugars, H2O2, O2-, phenylalanine ammonia lyase (PAL) activity, leaf gas exchange, antioxidant activity, antioxidant enzyme activity [ascorbate peroxidase (APX), catalase (CAT), superoxide dismutase (SOD) and Lipoxygenase inhibitory activity (LOX)] under four levels of foliar abscisic acid (ABA) application (0, 2, 4, 6 µM) for 15 weeks in Orthosiphon stamineus Benth. It was found that the production of plant secondary metabolites, soluble sugars, antioxidant activity, PAL activity and LOX inhibitory activity was influenced by foliar application of ABA. As the concentration of ABA was increased from 0 to 6 µM the production of total phenolics, flavonoids, sucrose, H2O2, O2-, PAL activity and LOX inhibitory activity was enhanced. It was also observed that the antioxidant capabilities (DPPH and ORAC) were increased. This was followed by increases in production of antioxidant enzymes APX, CAT and SOD. Under high application rates of ABA the net photosynthesis and stomatal conductance was found to be reduced. The production of primary and secondary metabolites displayed a significant positive relationship with H2O2 (total phenolics, r2 = 0.877; total flavonoids, r2 = 0.812; p ≤ 0.05) and O2- (total phenolics, r2 = 0.778; total flavonoids, r2 = 0.912; p ≤ 0.05). This indicated that increased oxidative stress at high application rates of ABA, improved the production of phytochemicals.
    Matched MeSH terms: Ascorbate Peroxidases/metabolism
  9. Ibrahim MH, Jaafar HZ, Karimi E, Ghasemzadeh A
    Int J Mol Sci, 2012;13(11):15321-42.
    PMID: 23203128 DOI: 10.3390/ijms131115321
    A randomized complete block design was used to characterize the relationship between production of total phenolics, flavonoids, ascorbic acid, carbohydrate content, leaf gas exchange, phenylalanine ammonia-lyase (PAL), soluble protein, invertase and antioxidant enzyme activities (ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) in Labisia pumila Benth var. alata under four levels of potassium fertilization experiments (0, 90, 180 and 270 kg K/ha) conducted for 12 weeks. It was found that the production of total phenolics, flavonoids, ascorbic acid and carbohydrate content was affected by the interaction between potassium fertilization and plant parts. As the potassium fertilization levels increased from 0 to 270 kg K/ha, the production of soluble protein and PAL activity increased steadily. At the highest potassium fertilization (270 kg K/ha) L. pumila exhibited significantly higher net photosynthesis (A), stomatal conductance (g(s)), intercellular CO(2) (C(i)), apparent quantum yield (ξ) and lower dark respiration rates (R(d)), compared to the other treatments. It was found that the production of total phenolics, flavonoids and ascorbic acid are also higher under 270 kg K/ha compared to 180, 90 and 0 kg K/ha. Furthermore, from the present study, the invertase activity was also found to be higher in 270 kg K/ha treatment. The antioxidant enzyme activities (APX, CAT and SOD) were lower under high potassium fertilization (270 kg K/ha) and have a significant negative correlation with total phenolics and flavonoid production. From this study, it was observed that the up-regulation of leaf gas exchange and downregulation of APX, CAT and SOD activities under high supplementation of potassium fertilizer enhanced the carbohydrate content that simultaneously increased the production of L. pumila secondary metabolites, thus increasing the health promoting effects of this plant.
    Matched MeSH terms: Ascorbate Peroxidases/metabolism
  10. Mohd Amnan MA, Pua TL, Lau SE, Tan BC, Yamaguchi H, Hitachi K, et al.
    PeerJ, 2021;9:e10879.
    PMID: 33614294 DOI: 10.7717/peerj.10879
    Drought is one of the severe environmental stresses threatening agriculture around the globe. Nitric oxide plays diverse roles in plant growth and defensive responses. Despite a few studies supporting the role of nitric oxide in plants under drought responses, little is known about its pivotal molecular amendment in the regulation of stress signaling. In this study, a label-free nano-liquid chromatography-mass spectrometry approach was used to determine the effects of sodium nitroprusside (SNP) on polyethylene glycol (PEG)-induced osmotic stress in banana roots. Plant treatment with SNP improved plant growth and reduced the percentage of yellow leaves. A total of 30 and 90 proteins were differentially identified in PEG+SNP against PEG and PEG+SNP against the control, respectively. The majority of proteins differing between them were related to carbohydrate and energy metabolisms. Antioxidant enzyme activities, such as superoxide dismutase and ascorbate peroxidase, decreased in SNP-treated banana roots compared to PEG-treated banana. These results suggest that the nitric oxide-induced osmotic stress tolerance could be associated with improved carbohydrate and energy metabolism capability in higher plants.
    Matched MeSH terms: Ascorbate Peroxidases
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links