Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Zainodin bin Haji Jubok
    In this paper a class of capital investment problem is considered within the context of mathematical programming. The usual and commonly used approach is presented upon the basis of the next present value criterion, and a branch and bound method is discussed for a model under extended assumptions.
    Dalam kertas ini satu kelas masalah pelaburan kapital difikirkan di dalam konteks pengaturcaraan matematik. Pendekatan biasa dan selalu digunakan, dikemukakan berasaskan kriterium Nilai Semasa Berikut dan satu kaedah bercabang dan terbatas dibincangkan untuk satu model di bawah anggapan yang diperluaskan.
    Matched MeSH terms: Biophysical Phenomena
  2. Rabha W. Ibrahim, Sayyedah A. Qasem, Zailan Siri
    Sains Malaysiana, 2015;44:295-300.
    This study deals with the presence and distinction of bounded m-solutions (type mild) for a family of generalized integral and differential equations of spot order with fractional resolvent and indefinite delay.
    Matched MeSH terms: Biophysical Phenomena
  3. Muhammad Danial Abu Hasan, Zair Asrar Ahmad, Mohd Salman Leong, Lim, Meng Hee
    MyJurnal
    This paper presents parameters analysis for the estimated modal damping ratio using a new version of the automated enhanced frequency domain decomposition (AEFDD). The purpose of this study is to provide a better choice of a maximum number of points of time segments and modal assurance criterion (MAC) index number regarding to the variable level of system damping (low and high damped structure) and degree of freedom of the system. According current literature, frequency domain (FD) methods seem to have the problem with providing a correct identification of the modal damping ratio, since the correct estimate of modal damping is still an open problem and often leads to biased estimates. This technique is capable of providing consistent modal parameters estimation, particularly for modal frequencies and mode shapes. As a necessary fundamental condition, the algorithm has been assessed first from computed numerical responses according to random white noise, acting on different shear-type frame structures and corrupted with noise. Results indicate that reducing the value of natural frequencies and modal damping ratios of the modes under analysis demands longer time segments and a high value of the maximum number of points for adequate information on the decaying correlation functions when computing a modal damping ratio. In addition, the results also prove that the MAC index does not significantly affect the results for the low damped system. However, the use of a high MAC index value for the high damped system significantly introduces large error bound and it becomes worse, particularly for the higher modes, as the standard deviation of percentage error increases gradually. Furthermore, the use of a MAC index for a high number of points of time segments significantly increases the standard deviation of the percentage error.
    Matched MeSH terms: Biophysical Phenomena
  4. S. Alrehaili, C. Beddani
    MATEMATIKA, 2019;35(2):271-282.
    MyJurnal
    The commutativity degree is the probability that a pair of elements chosen randomly from a group commute. The concept of commutativity degree has been widely discussed by several authors in many directions. One of the important generalizations of commutativity degree is the probability that a random element from a finite group G fixes a random element from a non-empty set S that we call the action degree of groups. In this research, the concept of action degree is further studied where some inequalities and bounds on the action degree of finite groups are determined. Moreover, a general relation between the action degree of a finite group G and a subgroup H is provided. Next, the action degree for the direct product of two finite groups is determined. Previously, the action degree was only de?ned for ?nite groups, the action degree for ?nitely generated groups will be de?ned in this research and some bounds on them are going to be determined.
    Matched MeSH terms: Biophysical Phenomena
  5. Lim TH
    Sains Malaysiana, 2014;43:1259-1262.
    A third order Nakashima type implicit Pseudo Runge-Kutta method is presented. The free parameter was determined by minimizing the error bound. The stability region of the method was presented. Some problems on delay differential equations are tested to compare the accuracy of the proposed method with third order RADAU I.
    Matched MeSH terms: Biophysical Phenomena
  6. Ibrahim RW, Ahmad MZ, Al-Janaby HF
    Saudi J Biol Sci, 2016 Jan;23(1):S45-9.
    PMID: 26858564 DOI: 10.1016/j.sjbs.2015.09.012
    A mutation is ultimately essential for adaptive evolution in all populations. It arises all the time, but is mostly fixed by enzymes. Further, most do consider that the evolution mechanism is by a natural assortment of variations in organisms in line for random variations in their DNA, and the suggestions for this are overwhelming. The altering of the construction of a gene, causing a different form that may be communicated to succeeding generations, produced by the modification of single base units in DNA, or the deletion, insertion, or rearrangement of larger units of chromosomes or genes. This altering is called a mutation. In this paper, a mathematical model is introduced to this reality. The model describes the time and space for the evolution. The tool is based on a complex domain for the space. We show that the evolution is distributed with the hypergeometric function. The Boundedness of the evolution is imposed by utilizing the Koebe function.
    Matched MeSH terms: Biophysical Phenomena
  7. Wiedenmann J, Bocquillon E, Deacon RS, Hartinger S, Herrmann O, Klapwijk TM, et al.
    Nat Commun, 2016;7:10303.
    PMID: 26792013 DOI: 10.1038/ncomms10303
    The Josephson effect describes the generic appearance of a supercurrent in a weak link between two superconductors. Its exact physical nature deeply influences the properties of the supercurrent. In recent years, considerable efforts have focused on the coupling of superconductors to the surface states of a three-dimensional topological insulator. In such a material, an unconventional induced p-wave superconductivity should occur, with a doublet of topologically protected gapless Andreev bound states, whose energies vary 4π-periodically with the superconducting phase difference across the junction. In this article, we report the observation of an anomalous response to rf irradiation in a Josephson junction made of a HgTe weak link. The response is understood as due to a 4π-periodic contribution to the supercurrent, and its amplitude is compatible with the expected contribution of a gapless Andreev doublet. Our work opens the way to more elaborate experiments to investigate the induced superconductivity in a three-dimensional insulator.
    Matched MeSH terms: Biophysical Phenomena
  8. Anas M, Gopir G, Miswan M
    Sains Malaysiana, 2018;47:999-1003.
    Type of bond is vital to understand the mechanism of interaction between corresponds atoms. We used three kinds of method
    to determine the type of bond between diatomic cluster of platinum and hydrogen: types of element, electronegativity
    and electron distribution. In this work, we found that the results from these three methods are not unanimously agreed
    with each other for bond type forming in platinum-hydrogen diatomic cluster. Thus, we conclude that the type of bond
    is hybrid of both: mainly covalent and slightly ionic.
    Matched MeSH terms: Biophysical Phenomena
  9. Razidah Ismail
    Scientific Research Journal, 2006;3(1):37-52.
    MyJurnal
    The state space modeling approach was developed to cope with the demand
    and performance due to the increase in system complexity, which may have
    multiple inputs and multiple outputs (MIMO). This approach is based on timedomain
    analysis and synthesis using state variables. This paper describes the
    development of a state space representation of a furnace system of a combined
    cycle power plant. Power plants will need to operate optimally so as to stay
    competitive, as even a small improvement in energy efficiency would involve
    substantial cost savings. Both the quantitative and qualitative analyses of the
    state space representation of the furnace system are discussed. These include
    the responses of systems excited by certain inputs and the structural properties
    of the system. The analysis on the furnace system showed that the system is
    bounded input and bounded output stable, controllable and observable. In
    practice, the state space formulation is very important for numerical computation
    and controller design, and can be extended for time-varying systems.
    Matched MeSH terms: Biophysical Phenomena
  10. Jotani MM, Gajera NN, Patel MC, Sung HH, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Oct 1;71(Pt 10):1121-4.
    PMID: 26594387 DOI: 10.1107/S2056989015016023
    The title compound, C17H15N3O2, is a monoclinic polymorph (P21/c with Z' = 1) of the previously reported triclinic (P-1 with Z' = 2) form [Gajera et al. (2013 ▸). Acta Cryst. E69, o736-o737]. The mol-ecule in the monoclinic polymorph features a central pyrazolyl ring with an N-bound p-tolyl group and a C-bound 1,3-benzodioxolyl fused-ring system on either side of the C atom bearing the amino group. The dihedral angles between the central ring and the N- and C-bound rings are 50.06 (5) and 27.27 (5)°, respectively. The angle between the pendent rings is 77.31 (4)°, indicating the mol-ecule has a twisted conformation. The five-membered dioxolyl ring has an envelope conformation with the methyl-ene C atom being the flap. The relative disposition of the amino and dioxolyl substituents is syn. One of the independent mol-ecules in the triclinic form has a similar syn disposition but the other has an anti arrangement of these substituents. In the crystal structure of the monoclinic form, mol-ecules assemble into supra-molecular helical chains via amino-pyrazolyl N-H⋯N hydrogen bonds. These are linked into layers via C-H⋯π inter-actions, and layers stack along the a axis with no specific inter-actions between them.
    Matched MeSH terms: Biophysical Phenomena
  11. Zaldi NB, Hussen RSD, Lee SM, Halcovitch NR, Jotani MM, Tiekink ERT
    Acta Crystallogr E Crystallogr Commun, 2017 Jun 01;73(Pt 6):842-848.
    PMID: 28638641 DOI: 10.1107/S2056989017006855
    The title compound, [Sn(CH3)2(C5H8NOS2)2], has the Sn(IV) atom bound by two methyl groups which lie over the weaker Sn-S bonds formed by two asymmetrically chelating di-thio-carbamate ligands so that the coordination geometry is skew-trapezoidal bipyramidal. The most prominent feature of the mol-ecular packing are secondary Sn⋯S inter-actions [Sn⋯S = 3.5654 (7) Å] that lead to centrosymmetric dimers. These are connected into a three-dimensional architecture via methyl-ene-C-H⋯S and methyl-C-H⋯O(morpholino) inter-actions. The Sn⋯S inter-actions are clearly evident in the Hirshfeld surface analysis of the title compound along with a number of other inter-molecular contacts.
    Matched MeSH terms: Biophysical Phenomena
  12. Camargo LR, Zukerman-Schpector J, Deobald AM, Braga AL, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2015 Mar 1;71(Pt 3):o200-1.
    PMID: 25844248 DOI: 10.1107/S2056989015003242
    Two independent mol-ecules, A and B, comprise the asymmetric unit of the title compound, C20H21N3OSe. While the benzene ring directly bound to the central triazole ring is inclined to the same extent in both mol-ecules [dihedral angles = 40.41 (12) (mol-ecule A) and 44.14 (12)° (B)], greater differences are apparent in the dihedral angles between the Se-bound rings, i.e. 74.28 (12) (mol-ecule A) and 89.91 (11)° (B). Close intra-molecular Se⋯N inter-actions of 2.9311 (18) (mol-ecule A) and 2.9482 (18) Å (B) are noted. In the crystal, supra-molecular chains along the a axis are formed via O-H⋯N hydrogen bonding. These are connected into layers via C-H⋯O and C-H⋯N inter-actions; these stack along (01-1) without directional inter-molecular inter-actions between them.
    Matched MeSH terms: Biophysical Phenomena
  13. Ling I, Kumari H, Mirzamani M, Sobolev AN, Garvey CJ, Atwood JL, et al.
    Chem Commun (Camb), 2018 Sep 25;54(77):10824-10827.
    PMID: 30140821 DOI: 10.1039/c8cc05650a
    We report on the assembly of three-fold axially compressed icosahedral arrays of the bowl shaped p-sulfonatocalix[4]arene molecules in the solid-state, intricately bound to dipicolinate and yttrium(iii) ions, with the compression reflected in Hirshfeld surface analyses. Solution studies show dissolution of the icosahedra intact, but with a geometrical rearrangement to regular icosahedra.
    Matched MeSH terms: Biophysical Phenomena
  14. Bazikar F, Saraj M
    Sains Malaysiana, 2014;43:1271-1274.
    In the last few years we have seen a very rapid development on solving generalized geometric programming (GGP) problems, but so far less works has been devoted to MOGP due to the inherent difficulty which may arise in solving such problems. Our aim in this paper was to consider the problem of multi-objective geometric programming (MOGP) and solve the problem via two-level relaxed linear programming problem Yuelin et al. (2005) and that is due to simplicity which occurs through linearization i.e. transforming a GP to LP. In this approach each of the objective functions in multi-objective geometric programming is individually linearized using two-level linear relaxed bound method, which provides a lower bound for the optimal values. Finally our MOGP is transformed to a multi-objective linear programming problem (moLP) which is solved by reference point approach. In the end, a numerical example is given to investigate the feasibility and effectiveness of the proposed approach.
    Matched MeSH terms: Biophysical Phenomena
  15. Habshah Midi, Bagheri A, Rahmatullah Imon A
    Sains Malaysiana, 2011;40:1437-1447.
    Outliers in the X-direction or high leverage points are the latest known source of multicollinearity. Multicollinearity is a nonorthogonality of two or more explanatory variables in multiple regression models, which may have important influential impacts on interpreting a fitted regression model. In this paper, we performed Monte Carlo simulation studies to achieve two main objectives. The first objective was to study the effect of certain magnitude and percentage of high leverage points, which are two important issues in tending the high leverage points to be collinearity-enhancing observations, on the multicollinarity pattern of the data. The second objective was to investigate in which situations these points do make different degrees of multicollinearity, such as moderate or severe. According to the simulation results, high leverage points should be in large magnitude for at least two explanatory variables to guarantee that they are the cause of multicollinearity problems. We also proposed some practical Lower Bound (LB) and Upper Bound (UB) for High Leverage Collinearity Influential Measure (HLCIM) which is an essential measure in detecting the degree of multicollinearity. A well-known example is used to confirm the simulation results.
    Matched MeSH terms: Biophysical Phenomena
  16. Tran HN, Pham VV, Vo DN, Nguyen-Tri P
    Chemosphere, 2019 Oct;233:988-990.
    PMID: 30853115 DOI: 10.1016/j.chemosphere.2019.02.084
    This article aims to discuss (1) the incorrect identification of Cr(III) and Cr(VI) binding energies in the Cr 2p XPS (X-ray photoelectron spectroscopy) spectra of the laden adsorbent (the nZVI-BC sample after Cr(VI) adsorption), (2) misconception regarding the Weber-Morris intraparticle diffusion model, and (3) inconsistency between the experiential data and the Thomas adsorption rate constants. The authors hope that our comments are beneficial for other researchers to avoid the undesirable mistakes.
    Matched MeSH terms: Biophysical Phenomena
  17. Thevendran R, Navien TN, Meng X, Wen K, Lin Q, Sarah S, et al.
    Anal Biochem, 2020 07 01;600:113742.
    PMID: 32315616 DOI: 10.1016/j.ab.2020.113742
    The performance of aptamers as versatile tools in numerous analytical applications is critically dependent on their high target binding specificity and selectivity. However, only the technical or methodological aspects of measuring aptamer-target binding affinities are focused, ignoring the equally important mathematical components that play pivotal roles in affinity measurements. In this study, we aim to provide a comprehensive review regarding the utilization of different mathematical models and equations, along with a detailed description of the computational steps involved in mathematically deriving the binding affinity of aptamers against their specific target molecules. Mathematical models ranging from one-site binding to multiple aptameric binding site-based models are explained in detail. Models applied in several different approaches of affinity measurements such as thermodynamics and kinetic analysis, including cooperativity and competitive-assay based mathematical models have been elaborately discussed. Mathematical models incorporating factors that could potentially affect affinity measurements are also further scrutinized.
    Matched MeSH terms: Biophysical Phenomena
  18. Thevendran R, Sarah S, Tang TH, Citartan M
    J Control Release, 2020 07 10;323:530-548.
    PMID: 32380206 DOI: 10.1016/j.jconrel.2020.04.051
    Aptamers are a class of folded nucleic acid strands capable of binding to different target molecules with high affinity and selectivity. Over the years, they have gained a substantial amount of interest as promising molecular tools for numerous medical applications, particularly in targeted therapeutics. However, only the different treatment approaches and current developments of aptamer-drug therapies have been discussed so far, ignoring the crucial technical and functional aspects of constructing a therapeutically effective aptamer-driven drug delivery system that translates to improved in-vivo performance. Hence, this paper provides a comprehensive review of the strategies used to improve the therapeutic performance of aptamer-guided delivery systems. We focus on the different functional features such as drug deployment, payload capacity, in-vivo stability and targeting efficiency to further our knowledge in enhancing the cell-specific delivery of aptamer-drug conjugates. Each reported strategy is critically discussed to emphasize both the benefits provided in comparison with other similar techniques and to outline their potential drawbacks with respect to the molecular properties of the aptamers, the drug and the system to be designed. The molecular architecture and design considerations for an efficient aptamer-based delivery system are also briefly elaborated.
    Matched MeSH terms: Biophysical Phenomena
  19. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 6;114(5):051801.
    PMID: 25699433
    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
    Matched MeSH terms: Biophysical Phenomena
  20. Mohamad R, Awang N, Jotani MM, Tiekink ER
    Acta Crystallogr E Crystallogr Commun, 2016 Aug 1;72(Pt 8):1130-7.
    PMID: 27536397 DOI: 10.1107/S2056989016011385
    The crystal and mol-ecular structures of two di-phenyl-tin bis-(di-thio-carbamate)s, [Sn(C6H5)2(C5H10NOS2)2], (I), and [Sn(C6H5)2(C7H14NO2S2)2], (II), are described. In (I), in which the metal atom lies on a twofold rotation axis, the di-thio-carbamate ligand coordinates with approximately equal Sn-S bond lengths and the ipso-C atoms of the Sn-bound phenyl groups occupy cis-positions in the resulting octa-hedral C2S4 donor set. A quite distinct coordination geometry is noted in (II), arising as a result of quite disparate Sn-S bond lengths. Here, the four S-donors define a trapezoidal plane with the ipso-C atoms lying over the weaker of the Sn-S bonds so that the C2S4 donor set defines a skewed trapezoidal bipyramid. The packing of (I) features supra-molecular layers in the ab plane sustained by methyl-ene-C-H⋯π(Sn-ar-yl) inter-actions; these stack along the c-axis direction with no specific inter-actions between them. In (II), supra-molecular chains along the b-axis direction are formed by methyl-ene-C-O(ether) inter-actions; these pack with no directional inter-actions between them. A Hirshfeld surface analysis was conducted on both (I) and (II) and revealed the dominance of H⋯H inter-actions contributing to the respective surfaces, i.e. >60% in each case, and other features consistent with the description of the mol-ecular packing above.
    Matched MeSH terms: Biophysical Phenomena
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links