Displaying publications 1 - 20 of 61 in total

  1. Lew KS, Othman R, Ishikawa K, Yeoh FY
    J Biomater Appl, 2012 Sep;27(3):345-58.
    PMID: 21862511 DOI: 10.1177/0885328211406459
    This review summarises the major developments of macroporous bioceramics used mainly for repairing bone defects. Porous bioceramics have been receiving attention ever since their larger surface area was reported to be beneficial for the formation of more rigid bonds with host tissues. The study of porous bioceramics is important to overcome the less favourable bonds formed between dense bioceramics and host tissues, especially in healing bone defects. Macroporous bioceramics, which have been studied extensively, include hydroxyapatite, tricalcium phosphate, alumina, and zirconia. The pore size and interconnections both have significant effects on the growth rate of bone tissues. The optimum pore size of hydroxyapatite scaffolds for bone growth was found to be 300 µm. The existence of interconnections between pores is critical during the initial stage of tissue ingrowth on porous hydroxyapatite scaffolds. Furthermore, pore formation on β-tricalcium phosphate scaffolds also allowed the impregnation of growth factors and cells to improve bone tissues growth significantly. The formation of vascularised tissues was observed on macroporous alumina but did not take place in the case of dense alumina due to its bioinert nature. A macroporous alumina coating on scaffolds was able to improve the overall mechanical properties, and it enabled the impregnation of bioactive materials that could increase the bone growth rate. Despite the bioinertness of zirconia, porous zirconia was useful in designing scaffolds with superior mechanical properties after being coated with bioactive materials. The pores in zirconia were believed to improve the bone growth on the coated system. In summary, although the formation of pores in bioceramics may adversely affect mechanical properties, the advantages provided by the pores are crucial in repairing bone defects.
    Matched MeSH terms: Bone Regeneration*
  2. Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, et al.
    Animal Model Exp Med, 2023 Apr;6(2):120-130.
    PMID: 36856186 DOI: 10.1002/ame2.12300
    Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
    Matched MeSH terms: Bone Regeneration*
  3. Zeimaran E, Pourshahrestani S, Djordjevic I, Pingguan-Murphy B, Kadri NA, Towler MR
    Mater Sci Eng C Mater Biol Appl, 2015 Aug;53:175-88.
    PMID: 26042705 DOI: 10.1016/j.msec.2015.04.035
    Biodegradable elastomers have clinical applicability due to their biocompatibility, tunable degradation and elasticity. The addition of bioactive glasses to these elastomers can impart mechanical properties sufficient for hard tissue replacement. Hence, a composite with a biodegradable polymer matrix and a bioglass filler can offer a method of augmenting existing tissue. This article reviews the applications of such composites for skeletal augmentation.
    Matched MeSH terms: Bone Regeneration*
  4. Shariff KA, Tsuru K, Ishikawa K
    Mater Sci Eng C Mater Biol Appl, 2017 Jun 01;75:1411-1419.
    PMID: 28415432 DOI: 10.1016/j.msec.2017.03.004
    β-Tricalcium phosphate (β-TCP) has attracted much attention as an artificial bone substitute owing to its biocompatibility and osteoconductivity. In this study, osteoconductivity of β-TCP bone substitute was enhanced without using growth factors or cells. Dicalcium phosphate dihydrate (DCPD), which is known to possess the highest solubility among calcium phosphates, was coated on β-TCP granules by exposing their surface with acidic calcium phosphate solution. The amount of coated DCPD was regulated by changing the reaction time between β-TCP granules and acidic calcium phosphate solution. Histomorphometry analysis obtained from histological results revealed that the approximately 10mol% DCPD-coated β-TCP granules showed the largest new bone formation compared to DCPD-free β-TCP granules, approximately 2.5mol% DCPD-coated β-TCP granules, or approximately 27mol% DCPD-coated β-TCP granules after 2 and 4weeks of implantation. Based on this finding, we demonstrate that the osteoconductivity of β-TCP granules could be improved by coating their surface with an appropriate amount of DCPD.
    Matched MeSH terms: Bone Regeneration/drug effects*
  5. Chai, W.L.
    Ann Dent, 2009;16(1):24-30.
    This systematic review focuses on the management of two types of osseous defects, i.e. dehiscence and fenestration that arise during the placement of dental implant in the edentulous area (delayed implant placement). A systematic online search of main database from 1975 to 2009 was made. Five randomised controlled trials have been identified based on the inclusion criteria. Different management procedures were identified, in which guided bone regeneration procedure was most commonly advocated. Resorbable and non-resorbable m'embranes were compared, in which resorbable membrane was preferred as it caused less complicatiQn of membrane exposure or risk of infection. The benefit of using bone substitute along with membrane in rypairing bony defects cannot be concluded.
    Matched MeSH terms: Bone Regeneration
  6. Ali M, Mohd Noor SNF, Mohamad H, Ullah F, Javed F, Abdul Hamid ZA
    Biomed Phys Eng Express, 2024 Apr 17;10(3).
    PMID: 38224615 DOI: 10.1088/2057-1976/ad1e75
    Guided tissue/bone regeneration (GTR/GBR) is a widely used technique in dentistry to facilitate the regeneration of damaged bone and tissue, which involves guiding materials that eventually degrade, allowing newly created tissue to take its place. This comprehensive review the evolution of biomaterials for guided bone regeneration that showcases a progressive shift from non-resorbable to highly biocompatible and bioactive materials, allowing for more effective and predictable bone regeneration. The evolution of biomaterials for guided bone regeneration GTR/GBR has marked a significant progression in regenerative dentistry and maxillofacial surgery. Biomaterials used in GBR have evolved over time to enhance biocompatibility, bioactivity, and efficacy in promoting bone growth and integration. This review also probes into several promising fabrication techniques like electrospinning and latest 3D printing fabrication techniques, which have shown potential in enhancing tissue and bone regeneration processes. Further, the challenges and future direction of GTR/GBR are explored and discussed.
    Matched MeSH terms: Bone Regeneration
  7. Zakaria SM, Sharif Zein SH, Othman MR, Yang F, Jansen JA
    Tissue Eng Part B Rev, 2013 Oct;19(5):431-41.
    PMID: 23557483 DOI: 10.1089/ten.TEB.2012.0624
    Hydroxyapatite is a biocompatible material that is extensively used in the replacement and regeneration of bone material. In nature, nanostructured hydroxyapatite is the main component present in hard body tissues. Hence, the state of the art in nanotechnology can be exploited to synthesize nanophase hydroxyapatite that has similar properties with natural hydroxyapatite. Sustainable methods to mass-produce synthetic hydroxyapatite nanoparticles are being developed to meet the increasing demand for these materials and to further develop the progress made in hard tissue regeneration, especially for orthopedic and dental applications. This article reviews the current developments in nanophase hydroxyapatite through various manufacturing techniques and modifications.
    Matched MeSH terms: Bone Regeneration*
  8. Kouhi M, Jayarama Reddy V, Fathi M, Shamanian M, Valipouri A, Ramakrishna S
    J Biomed Mater Res A, 2019 06;107(6):1154-1165.
    PMID: 30636094 DOI: 10.1002/jbm.a.36607
    Guided bone regeneration (GBR) has been established to be an effective method for the repair of defective tissues, which is based on isolating bone defects with a barrier membrane for faster tissue reconstruction. The aim of the present study is to develop poly (hydroxybutyrate-co-3-hydroxyvalerate) (PHBV)/fibrinogen (FG)/bredigite (BR) membranes with applicability in GBR. BR nanoparticles were synthesized through a sol-gel method and characterized using transmission electron microscopy and X-ray diffractometer. PHBV, PHBV/FG, and PHBV/FG/BR membranes were fabricated using electrospinning and characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, contact angle, pore size, thermogravimetric analysis and tensile strength. The electrospun PHBV, PHBV/FG, and PHBV/FG/BR nanofibers were successfully obtained with the mean diameter ranging 240-410 nm. The results showed that Young's modulus and ultimate strength of the PHBV membrane reduced upon blending with FG and increased by further incorporation of BR nanoparticles, Moreover hydrophilicity of the PHBV membrane improved on addition of FG and BR. The in vitro degradation assay demonstrated that incorporation of FG and BR into PHBV matrix increased its hydrolytic degradation. Cell-membrane interactions were studied by culturing human fetal osteoblast cells on the fabricated membrane. According to the obtained results, osteoblasts seeded on PHBV/FG/BR displayed higher cell adhesion and proliferation compared to PHBV and PHBV/FG membrane. Furthermore, alkaline phosphatase activity and alizarin red-s staining indicated enhanced osteogenic differentiation and mineralization of cells on PHBV/FG/BR membranes. The results demonstrated that developed electrospun PHBV/FG/BR nanofibrous mats have desired potential as a barrier membrane for guided bone tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 107A: 1154-1165, 2019.
    Matched MeSH terms: Bone Regeneration/drug effects*
  9. Saarani NN, Jamuna-Thevi K, Shahab N, Hermawan H, Saidin S
    Dent Mater J, 2017 May 31;36(3):260-265.
    PMID: 28111388 DOI: 10.4012/dmj.2016-177
    A guided bone regeneration (GBR) membrane has been extensively used in the repair and regeneration of damaged periodontal tissues. One of the main challenges of GBR restoration is bacterial colonization on the membrane, constitutes to premature membrane degradation. Therefore, the purpose of this study was to investigate the antibacterial efficacy of triple-layered GBR membrane composed of poly(lactic-co-glycolic acid) (PLGA), nanoapatite (NAp) and lauric acid (LA) with two types of Gram-negative periodontal bacteria, Fusobacterium nucleatum and Porphyromonas gingivalis through a disc diffusion and bacterial count tests. The membranes exhibited a pattern of growth inhibition and killing effect against both bacteria. The increase in LA concentration tended to increase the bactericidal activities which indicated by higher diameter of inhibition zone and higher antibacterial percentage. It is shown that the incorporation of LA into the GBR membrane has retarded the growth and proliferation of Gram-negative periodontal bacteria for the treatment of periodontal disease.
    Matched MeSH terms: Bone Regeneration*
  10. Hanna R, Dalvi S, Amaroli A, De Angelis N, Benedicenti S
    J Biophotonics, 2021 01;14(1):e202000267.
    PMID: 32857463 DOI: 10.1002/jbio.202000267
    A present, photobiomodulation therapy (PBMT) effectiveness in enhancing bone regeneration in bone defects grafted with or without biomaterials is unclear. This systematic review (PROSPERO, ref. CRD 42019148959) aimed to critically appraise animal in vivo published data and present the efficacy of PBMT and its potential synergistic effects on grafted bone defects. MEDLINE, CCCT, Scopus, Science Direct, Google Scholar, EMBASE, EBSCO were searched, utilizing the following keywords: bone repair; low-level laser therapy; LLLT; light emitting diode; LEDs; photobiomodulation therapy; in vivo animal studies, bone substitutes, to identify studies between 1994 and 2019. After applying the eligibility criteria, 38 papers included where the results reported according to "PRISMA." The results revealed insufficient and incomplete PBM parameters, however, the outcomes with or without biomaterials have positive effects on bone healing. In conclusion, in vivo animal studies with a standardized protocol to elucidate the effects of PBMT on biomaterials are required initially prior to clinical studies.
    Matched MeSH terms: Bone Regeneration
  11. Ginebra MP, Aparicio C, Engel E, Navarro M, Javier Gil F, Planell JA
    Med J Malaysia, 2004 May;59 Suppl B:65-6.
    PMID: 15468821
    Matched MeSH terms: Bone Regeneration/drug effects*; Bone Regeneration/physiology
  12. Stewart SK
    Malays Orthop J, 2019 Jul;13(2):1-10.
    PMID: 31467644 DOI: 10.5704/MOJ.1907.001
    Non-union of bone following fracture is an orthopaedic condition with a high morbidity and clinical burden. Despite its estimated global prevalence of nine million annually, the limit of bone regeneration therapy still results in patients living with pain, a reduced quality of life and associated psychological, social and financial repercussions. This review provides an overview of the current epidemiological and aetiological data, and highlights where the clinical challenges in treating non-union lie. Current treatment strategies are discussed as well as promising future research foci. Development in biotechnologies to treat non-union provides exciting scope for more effective treatment for this debilitating condition.
    Matched MeSH terms: Bone Regeneration
  13. Touri M, Moztarzadeh F, Abu Osman NA, Dehghan MM, Brouki Milan P, Farzad-Mohajeri S, et al.
    ACS Biomater Sci Eng, 2020 05 11;6(5):2985-2994.
    PMID: 33463293 DOI: 10.1021/acsbiomaterials.9b01789
    Hypoxia, the result of disrupted vasculature, can be categorized in the main limiting factors for fracture healing. A lack of oxygen can cause cell apoptosis, tissue necrosis, and late tissue healing. Remedying hypoxia by supplying additional oxygen will majorly accelerate bone healing. In this study, biphasic calcium phosphate (BCP) scaffolds were fabricated by robocasting, an additive manufacturing technique. Then, calcium peroxide (CPO) particles, as an oxygen-releasing agent, were coated on the BCP scaffolds. Segmental radial defects with the size of 15 mm were created in rabbits. Uncoated and CPO-coated BCP scaffolds were implanted in the defects. The empty (control) group received no implantation. Repairing of the bone was investigated via X-ray, histological analysis, and biomechanical tests at 3 and 6 months postoperatively, with immunohistochemical examinations at 6 months after operation. According to the radiological observations, formation of new bone was augmented at the interface between the implant and host bone and internal pores of CPO-coated BCP scaffolds compared to uncoated scaffolds. Histomorphometry analysis represented that the amount of newly formed bone in the CPO-coated scaffold was nearly two times higher than the uncoated one. Immunofluorescence staining revealed that osteogenic markers, osteonectin and octeocalcin, were overexpressed in the defects treated with the coated scaffolds at 6 months of postsurgery, demonstrating higher osteogenic differentiation and bone mineralization compared to the uncoated scaffold group. Furthermore, the coated scaffolds had superior biomechanical properties as in the case of 3 months after surgery, the maximal flexural force of the coated scaffolds reached to 134 N, while it was 92 N for uncoated scaffolds. The results could assure a boosted ability of bone repair for CPO-coated BCP scaffolds implanted in the segmental defect of rabbit radius because of oxygen-releasing coating, and this system of oxygen-generating coating/scaffold might be a potential for accelerated repairing of bone defects.
    Matched MeSH terms: Bone Regeneration
  14. Bajuri MY, Selvanathan N, Dzeidee Schaff FN, Abdul Suki MH, Ng AMH
    Tissue Eng Regen Med, 2021 06;18(3):377-385.
    PMID: 34043210 DOI: 10.1007/s13770-021-00343-2
    BACKGROUND: Managing massive bone defects, a great challenge to orthopaedics reconstructive surgery. The problem arise is the supply of suitable bone is limited with many complications. Tissue-engineered hydroxyapatite bone (TEHB) scaffold impregnated with osteoprogenitor cells developed as an alternative to promote bone regeneration.

    METHODS: This animal protocol has been approved by Universiti Kebangsaan Malaysia Animal Ethical Committee. The TEHB scaffold prepared from hydroxyapatite using gel casting method. A total of six adolescent female sheep were chosen for this study. Later, all the sheep were euthanized in a proper manner and the bone harvested for biomechanical study. Bone marrow was collected from iliac crest of the sheep and bone marrow stem cells (BMSCs) isolated and cultured. BMSCs then cultured in osteogenic medium for osteoprogenitor cells development and the plasma collected was seeded with osteoprogenitor cells mixed with calcium chloride. Bone defect of 3 cm length of tibia bone created from each sheep leg and implanted with autologous and TEHB scaffold in 2 different groups of sheep. Wound site was monitored weekly until the wound completely healed and conventional X-ray performed at week 1 and 24. Shear test was conducted to determine the shear force on the autologous bone and TEHB scaffold after implantation for 24 weeks.

    RESULTS: All of the sheep survived without any complications during the study period and radiograph showed new bone formation. Later, the bone harvested was for biomechanical study. The highest shear force for the autologous group was 13 MPa and the lowest was 5 MPa while for the scaffold group, the highest was 10 MPa and the lowest was 3 MPa. Although, proximal and distal interface of autologous bone graft shows higher shear strength compared to the TEHB scaffold but there is no significant difference in both groups, p value > 0.05. Histologically in both proximal and distal interface in both arms shows bone healing and woven bone formation.

    CONCLUSION: TEHB scaffold impregnated with osteoprogenitor cells has the potential to be developed as a bone substitute in view of its strength and capability to promote bone regeneration.

    Matched MeSH terms: Bone Regeneration
  15. Mohd Bakrynizam Abu Bakar Siddiq, Kamarul Izham Kamarudin, Kamarul Al Haq, Suresh Chopr
    Limb length discrepancy (LLD) is quite common.
    Lower limb shortening is one of the causes of limb
    length discrepancy. The common treatment that is
    used is the llizarov technique for bone lengthening.
    The new technique uses an intramedullary nail with
    a monoplanar external fixator. Using this technique,
    bone lengthening duration in patients can be reduced
    and knee joint mobility can be improved without
    jeopardizing bone regeneration. We report a case of a
    27-year-old gentleman who had right femur shortening
    from childhood and was referred to us for corrective
    deformity. He underwent bone lengthening on the nail
    which lenghthens and equalizes the leg while avoiding
    stiffness and reduces joint mobility which leads to good
    patient satisfaction outcome. The use of the external
    fixator with intramedullary nailing to lengthen the
    femur is one method that can reduce patient burden
    mentally and physically. However although it has many
    advantages we must watch out for the complications
    during the regular visits to ensure good outcome.
    Matched MeSH terms: Bone Regeneration
  16. Kattimani VS, Prathigudupu RS, Jairaj A, Khader MA, Rajeev K, Khader AA
    J Contemp Dent Pract, 2019 Aug 01;20(8):987-993.
    PMID: 31797859
    Since a long time, the preservation of the socket is emphasized for various reasons. Many studies have suggested the ridge preservation through socket grafting using various bone graft substitute materials (GSMs). But none of the studies suggested the material of choice for the grafting. So, the systematic review was planned to analyze the outcomes of synthetic hydroxyapatite (SHA) graft material for socket preservation. The review was aimed to determine the existing evidence for the use of SHA GSM for grafting and its usefulness.

    MATERIALS AND METHODS: The literature search was performed for the studies published in the English language independently by all four authors (search team) in the Medline database through the PubMed search engine for the past 5 years. The study involved predetermined inclusion and exclusion criteria for the search. The final lists of clinical trials were analyzed to determine the existing evidence and suggested the mechanism of action.

    REVIEW RESULTS: The search resulted in 117 titles. After application of inclusion and exclusion criteria, a total of seven studies were found eligible for this systematic review. Out of seven, two studies were found eligible for meta-analysis whereas remaining included for the systematic review.

    CONCLUSION: The meta-analysis favors socket grafting compared to control in terms of preservation of existing bone height and width. The SHA grafting showed successful bone regeneration with less connective tissue component. The histomorphometric evaluation showed a good bone regeneration associated with SHA than xenograft. Within the limitations of this meta-analysis, the synthetic GSM can be used for socket grafting.

    CLINICAL SIGNIFICANCE: In the wake of increasing graft materials in the market and different origin raw material sources for the preparation of graft materials, clinicians are in dilemma for selection and its use. The success of grafting depends on the selection of appropriate material with a suitable calcium/phosphate (Ca/P) ratio. The review provided available evidence for the use of SHA.

    Matched MeSH terms: Bone Regeneration
  17. Leung YY, Yeung AWK, Ismail IN, Wong NSM
    Int J Oral Maxillofac Surg, 2020 Oct;49(10):1360-1366.
    PMID: 32340909 DOI: 10.1016/j.ijom.2020.03.016
    A residual bone defect at the distal aspect of the adjacent second molar may occur after total removal of the lower third molar. Lower third molar coronectomy has been proved to be a safe alternative to total removal, but the extent of bone regeneration at the adjacent tooth after coronectomy is not well reported. The aim of this prospective study was to investigate the long-term bone regeneration at the distal aspect of the adjacent second molar after lower third molar coronectomy. Preoperative and postoperative cone beam computed tomography scans were measured to assess bone regeneration at the distobuccal (DB), mid-distal (MD), and distolingual (DL) aspects of the lower second molar. Forty-eight coronectomies in 37 patients (23 female) with a mean±standard deviation age of 29.1±7.2 years were assessed. The mean follow-up was 93.2±8.7 months. The mean bone level increase at DB, MD, and DL aspects was 3.2±1.6mm, 3.5±1.5mm, and 3.2±1.6mm, respectively; the bone levels were significantly higher than the preoperative measurements (P<0.001). Age and impaction patterns were not factors affecting bone regeneration. Based on this study, it appears that coronectomy of the lower third molar brings favourable bone regeneration at the distal aspect of the adjacent second molar.
    Matched MeSH terms: Bone Regeneration
  18. Luchman NA, Megat Abdul Wahab R, Zainal Ariffin SH, Nasruddin NS, Lau SF, Yazid F
    PeerJ, 2022;10:e13356.
    PMID: 35529494 DOI: 10.7717/peerj.13356
    BACKGROUND: The selection of appropriate scaffold plays an important role in ensuring the success of bone regeneration. The use of scaffolds with different materials and their effect on the osteogenic performance of cells is not well studied and this can affect the selection of suitable scaffolds for transplantation. Hence, this study aimed to investigate the comparative ability of two different synthetic scaffolds, mainly hydroxyapatite (HA) and polycaprolactone (PCL) scaffolds in promoting in vitro and in vivo bone regeneration.

    METHOD: In vitro cell viability, morphology, and alkaline phosphatase (ALP) activity of MC3T3-E1 cells on HA and PCL scaffolds were determined in comparison to the accepted model outlined for two-dimensional systems. An in vivo study involving the transplantation of MC3T3-E1 cells with scaffolds into an artificial bone defect of 4 mm length and 1.5 mm depth in the rat's left maxilla was conducted. Three-dimensional analysis using micro-computed tomography (micro-CT), hematoxylin and eosin (H&E), and immunohistochemistry analyses evaluation were performed after six weeks of transplantation.

    RESULTS: MC3T3-E1 cells on the HA scaffold showed the highest cell viability. The cell viability on both scaffolds decreased after 14 days of culture, which reflects the dominant occurrence of osteoblast differentiation. An early sign of osteoblast differentiation can be detected on the PCL scaffold. However, cells on the HA scaffold showed more prominent results with intense mineralized nodules and significantly (p bone formation were significantly (p bone regeneration ability of MC3T3-E1. Regardless, in vitro and in vivo bone regeneration was better in the HA scaffold which indicates its great potential for application in bone regeneration.

    Matched MeSH terms: Bone Regeneration
  19. Tuygunov N, Zakaria MN, Yahya NA, Abdul Aziz A, Cahyanto A
    J Mech Behav Biomed Mater, 2023 Oct;146:106099.
    PMID: 37660446 DOI: 10.1016/j.jmbbm.2023.106099
    Bone regeneration is a rapidly growing field that seeks to develop new biomaterials to regenerate bone defects. Conventional bone graft materials have limitations, such as limited availability, complication, and rejection. Glass ionomer cement (GIC) is a biomaterial with the potential for bone regeneration due to its bone-contact biocompatibility, ease of use, and cost-effectiveness. GIC is a two-component material that adheres to the bone and releases ions that promote bone growth and mineralization. A systematic literature search was conducted using PubMed-MEDLINE, Scopus, and Web of Science databases and registered in the PROSPERO database to determine the evidence regarding the efficacy and bone-contact biocompatibility of GIC as bone cement. Out of 3715 initial results, thirteen studies were included in the qualitative synthesis. Two tools were employed in evaluating the Risk of Bias (RoB): the QUIN tool for assessing in vitro studies and SYRCLE for in vivo. The results indicate that GIC has demonstrated the ability to adhere to bone and promote bone growth. Establishing a chemical bond occurs at the interface between the GIC and the mineral phase of bone. This interaction allows the GIC to exhibit osteoconductive properties and promote the growth of bone tissue. GIC's bone-contact biocompatibility, ease of preparation, and cost-effectiveness make it a promising alternative to conventional bone grafts. However, further research is required to fully evaluate the potential application of GIC in bone regeneration. The findings hold implications for advancing material development in identifying the optimal composition and fabrication of GIC as a bone repair material.
    Matched MeSH terms: Bone Regeneration
  20. Buzayan MM, Mahdey HM, Ning CJ
    J Indian Prosthodont Soc, 2020 04 07;20(2):219-223.
    PMID: 32655228 DOI: 10.4103/jips.jips_264_19
    Alveolar ridge deficiency is considered a major esthetic limitation, especially in the maxillary anterior region. Several approaches have been developed to enhance and increase the soft-tissue volume. Among those approaches are connective tissue grafts, platelet-rich fibrin (PRF) membrane and implying the guided bone regeneration concept. The PRF grafting technique was employed in this clinical case to improve and enhance the anterior esthetic without the need for the bone graft and augmentation. This article describes the use of PRF as a sole grafting material for both socket and soft-tissue augmentation for a 23-year-old male, who had an accident 8 years ago while he was playing a basketball, which caused his upper front teeth to be intruded and discolored. The upper left central tooth suffered a major external root resorption; hence, it was extracted. PRF was prepared and packed in and extruded out of the socket. This was combined with ovate design provisional bridge. Ten days, 1 month, 3 months, and 6 months postoperative review showed a significantly well-progressed healing. According to the encouraging result obtained in this clinical case in regard to tissue healing and esthetic, the PRF can be a potential sole graft material for small anterior deficient areas. This may reduce the need of bone augmentation and graft in such selected cases.
    Matched MeSH terms: Bone Regeneration
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links