Displaying publications 1 - 20 of 1369 in total

Abstract:
Sort:
  1. Latif G, Iskandar DNFA, Alghazo J, Butt MM
    Curr Med Imaging, 2021;17(1):56-63.
    PMID: 32160848 DOI: 10.2174/1573405616666200311122429
    BACKGROUND: Detection of brain tumor is a complicated task, which requires specialized skills and interpretation techniques. Accurate brain tumor classification and segmentation from MR images provide an essential choice for medical treatments. Different objects within an MR image have similar size, shape, and density, which makes the tumor classification and segmentation even more complex.

    OBJECTIVE: Classification of the brain MR images into tumorous and non-tumorous using deep features and different classifiers to get higher accuracy.

    METHODS: In this study, a novel four-step process is proposed; pre-processing for image enhancement and compression, feature extraction using convolutional neural networks (CNN), classification using the multilayer perceptron and finally, tumor segmentation using enhanced fuzzy cmeans method.

    RESULTS: The system is tested on 65 cases in four modalities consisting of 40,300 MR Images obtained from the BRATS-2015 dataset. These include images of 26 Low-Grade Glioma (LGG) tumor cases and 39 High-Grade Glioma (HGG) tumor cases. The proposed CNN feature-based classification technique outperforms the existing methods by achieving an average accuracy of 98.77% and a noticeable improvement in the segmentation results are measured.

    CONCLUSION: The proposed method for brain MR image classification to detect Glioma Tumor detection can be adopted as it gives better results with high accuracies.

    Matched MeSH terms: Brain; Brain Neoplasms
  2. Arumugasamy N
    Med J Malaya, 1966 Dec;21(2):149-60.
    PMID: 4227386
    Matched MeSH terms: Brain Diseases/pathology*; Brain Neoplasms/pathology*
  3. Md S, Mustafa G, Baboota S, Ali J
    Drug Dev Ind Pharm, 2015;41(12):1922-34.
    PMID: 26057769 DOI: 10.3109/03639045.2015.1052081
    Brain disorders remain the world's leading cause of disability, and account for more hospitalizations and prolonged care than almost all other diseases combined. The majority of drugs, proteins and peptides do not readily permeate into brain due to the presence of the blood-brain barrier (BBB), thus impeding treatment of these conditions.
    Matched MeSH terms: Blood-Brain Barrier; Brain; Brain Diseases
  4. Ahmad Helmy AK, Salmah Jalaluddin WM, Ab Rahman IG
    Malays J Med Sci, 2010 Oct;17(4):51-6.
    PMID: 22135561 MyJurnal
    Brain ischaemia and infarction are the leading factors in morbidity and mortality of traumatic brain injury. This study aimed to determine the perfusion status of pericontusional hypodense areas in traumatic cerebral contusion
    Matched MeSH terms: Brain Ischemia; Brain Contusion; Brain Injuries, Traumatic
  5. Abdullah S, Tan CT
    Handb Clin Neurol, 2014;123:663-70.
    PMID: 25015510 DOI: 10.1016/B978-0-444-53488-0.00032-8
    Matched MeSH terms: Brain/pathology; Brain/virology
  6. Abdullah JM
    Med J Malaysia, 2011 Jun;66(2):83.
    PMID: 22106681
    Matched MeSH terms: Brain Injuries/diagnosis; Brain Injuries/etiology; Brain Injuries/therapy*
  7. Mokhtarudin MJ, Payne SJ
    PMID: 26991256 DOI: 10.1002/cnm.2784
    Brain oedema is thought to form and to clear through the use of water-protein channels, aquaporin-4 (AQP4), which are found in the astrocyte endfeet. The model developed here is used to study the function of AQP4 in the formation and elimination of oedema fluid in ischaemia-reperfusion injury. The cerebral space is assumed to be made of four fluid compartments: astrocyte, neuron, ECS and blood microvessels, and a solid matrix for the tissue, and this is modelled using multiple-network poroelastic theory. AQP4 allows the movement of water between astrocyte and the ECS and the microvessels. It is found that the presence of AQP4 may help in reducing vasogenic oedema shown by a decrease in brain tissue extracellular pressure. However, the astrocyte pressure will increase to compensate for this decrease, which may lead to cytotoxic oedema. In addition, the swelling will also depend on the ionic concentrations in the astrocyte and extracellular space, which may change after ischaemic stroke. Understanding the role of AQP4 in oedema may thus help the development of a treatment plan in reducing brain swelling after ischaemia-reperfusion.
    Matched MeSH terms: Brain/metabolism; Brain/pathology; Brain Edema/metabolism*; Brain Edema/pathology; Brain Ischemia/metabolism*; Brain Ischemia/pathology
  8. LIM TW, CHAN KE
    Med J Malaya, 1962 Mar;16:193-205.
    PMID: 14465296
    Matched MeSH terms: Brain*; Brain Diseases*
  9. Veeramuthu V, Hariri F, Narayanan V, Tan LK, Ramli N, Ganesan D
    J Oral Maxillofac Surg, 2016 Jun;74(6):1197.e1-1197.e10.
    PMID: 26917201 DOI: 10.1016/j.joms.2016.01.042
    The aim of the present study was to establish the incidence of maxillofacial (MF) injury accompanying mild traumatic brain injury (mTBI) and the associated neurocognitive deficits and white matter changes.
    Matched MeSH terms: Brain Concussion; Brain Injuries
  10. Glasauer FE
    Surg Neurol, 1976 Oct;6(4):257-60.
    PMID: 968728
    Matched MeSH terms: Brain Neoplasms/epidemiology*
  11. Ahmad, N. Z., Aini Ismafairus, A. H., Khairiah, A. H., Wan Ahmad Kamil, W. A., Mazlyfarina, M., Hanani, A. M.
    MyJurnal
    Introduction: This multiple-subject fMRI study continue to further investigate brain activation within and effective connectivity between the significantly (p
    Matched MeSH terms: Brain; Brain Mapping
  12. Tai, Sharon Mei-Ling, Kartini Rahmat, Teoh, Kean Hooi, Karupiah, Ravindran, Hazman Mohd Nor, Fatimah Kamila Abu Bakar, et al.
    Neurology Asia, 2014;19(2):227-230.
    MyJurnal
    Glioblastoma multiforme (GBM) is the commonest primary cerebral malignancy consisting of 12- 20% of intracranial brain tumours.1 We report here a patient with GBM with very unusual marked and widespread leptomeningeal GBM.
    Matched MeSH terms: Brain; Brain Neoplasms
  13. Richardson PM
    Can J Neurol Sci, 1976 May;3(2):133-4.
    PMID: 1268766
    Matched MeSH terms: Brain Diseases/surgery*
  14. Leong AS
    J Singapore Paediatr Soc, 1976 Apr;18(1):38-42.
    PMID: 966741
    Matched MeSH terms: Brain Diseases*
  15. Pallie W
    Med J Malaya, 1966 Sep;21(1):70-8.
    PMID: 4224882
    Matched MeSH terms: Brain/blood supply*
  16. Chin WN
    Med J Malaya, 1966 Sep;21(1):97-8.
    PMID: 4224887
    Matched MeSH terms: Brain Diseases/diagnosis*
  17. Ting FF, Sim KS, Lim CP
    Comput Med Imaging Graph, 2018 11;69:82-95.
    PMID: 30219737 DOI: 10.1016/j.compmedimag.2018.08.011
    Computed Tomography (CT) images are widely used for the identification of abnormal brain tissues following infarct and hemorrhage of a stroke. The treatment of this medical condition mainly depends on doctors' experience. While manual lesion delineation by medical doctors is currently considered as the standard approach, it is time-consuming and dependent on each doctor's expertise and experience. In this study, a case-control comparison brain lesion segmentation (CCBLS) method is proposed to segment the region pertaining to brain injury by comparing the voxel intensity of CT images between control subjects and stroke patients. The method is able to segment the brain lesion from the stacked CT images automatically without prior knowledge of the location or the presence of the lesion. The aim is to reduce medical doctors' burden and assist them in making an accurate diagnosis. A case study with 300 sets of CT images from control subjects and stroke patients is conducted. Comparing with other existing methods, the outcome ascertains the effectiveness of the proposed method in detecting brain infarct of stroke patients.
    Matched MeSH terms: Brain; Brain Injuries
  18. Idris Z
    Malays J Med Sci, 2020 Feb;27(1):1-5.
    PMID: 32158340 DOI: 10.21315/mjms2020.27.1.1
    Brain energy is associated commonly with electrochemical type of energy. This energy is displayed in the form of electromagnetic waves or better known as brainwaves. This concept is a classical concept (Newtonian) in which the studied object, that is the brain is viewed as a large anatomical object with its functional brainwaves. Another concept which incorporates quantum principles in it can also be used to study the brain. This perspective viewing the brain as purely waves, including its anatomical substrate. Thus, there are two types of energy or field exist in our brain: electromagnetic and quantum fields. Electromagnetic field is thought as dominant energy in purely motor and sensory inputs to our brain, whilst quantum field or energy is perceived as more influential in brain cognitions. The reason for this notion lies in its features which is diffused, non-deterministic, varied, complex and oneness.
    Matched MeSH terms: Brain; Brain Waves
  19. Tan CY, Ahmad SB, Goh KJ, Latif LA, Shahrizaila N
    Neurol India, 2018 9 21;66(5):1475-1480.
    PMID: 30233023 DOI: 10.4103/0028-3886.241342
    Matched MeSH terms: Brain/physiopathology; Brain Death/diagnosis*; Brain Death/physiopathology; Brain Stem/physiopathology
  20. Prakash A, Bharti K, Majeed AB
    Fundam Clin Pharmacol, 2015 Apr;29(2):131-49.
    PMID: 25659970 DOI: 10.1111/fcp.12110
    Zinc is the authoritative metal which is present in our body, and reactive zinc metal is crucial for neuronal signaling and is largely distributed within presynaptic vesicles. Zinc also plays an important role in synaptic function. At cellular level, zinc is a modulator of synaptic activity and neuronal plasticity in both development and adulthood. Different importers and transporters are involved in zinc homeostasis. ZnT-3 is a main transporter involved in zinc homeostasis in the brain. It has been found that alterations in brain zinc status have been implicated in a wide range of neurological disorders including impaired brain development and many neurodegenerative disorders such as Alzheimer's disease, and mood disorders including depression, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and prion disease. Furthermore, zinc has also been implicated in neuronal damage associated with traumatic brain injury, stroke, and seizure. Understanding the mechanisms that control brain zinc homeostasis is thus critical to the development of preventive and treatment strategies for these and other neurological disorders.
    Matched MeSH terms: Brain/metabolism*; Brain/pathology; Brain Diseases/diagnosis; Brain Diseases/metabolism*; Brain Injuries/diagnosis; Brain Injuries/metabolism
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links