Displaying publications 1 - 20 of 108 in total

Abstract:
Sort:
  1. Juntit OA, Sornsuwan K, Wisitponchai T, Sanghiran Lee V, Sakkhachornphop S, Yasamut U, et al.
    Int J Mol Sci, 2023 Mar 09;24(6).
    PMID: 36982337 DOI: 10.3390/ijms24065266
    Several anti-HIV scaffolds have been proposed as complementary treatments to highly active antiretroviral therapy. AnkGAG1D4, a designed ankyrin repeat protein, formerly demonstrated anti-HIV-1 replication by interfering with HIV-1 Gag polymerization. However, the improvement of the effectiveness was considered. Recently, the dimeric molecules of AnkGAG1D4 were accomplished in enhancing the binding activity against HIV-1 capsid (CAp24). In this study, the interaction of CAp24 against the dimer conformations was elucidated to elaborate the bifunctional property. The accessibility of the ankyrin binding domains was inspected by bio-layer interferometry. By inverting the second module of dimeric ankyrin (AnkGAG1D4NC-CN), the CAp24 interaction KD was significantly reduced. This reflects the capability of AnkGAG1D4NC-CN in simultaneously capturing CAp24. On the contrary, the binding activity of dimeric AnkGAG1D4NC-NC was indistinguishable from the monomeric AnkGAG1D4. The bifunctional property of AnkGAG1D4NC-CN was subsequently confirmed in the secondary reaction with additional p17p24. This data correlates with the MD simulation, which suggested the flexibility of the AnkGAG1D4NC-CN structure. The CAp24 capturing capacity was influenced by the distance of the AnkGAG1D4 binding domains to introduce the avidity mode of AnkGAG1D4NC-CN. Consequently, AnkGAG1D4NC-CN showed superior potency in interfering with HIV-1 NL4-3 WT and HIV-1 NL4-3 MIRCAI201V replication than AnkGAG1D4NC-NC and an affinity improved AnkGAG1D4-S45Y.
    Matched MeSH terms: Capsid*; Capsid Proteins
  2. Ghadin N, Yusof NAM, Syarul Nataqain B, Raston NHA, Low CF
    J Fish Dis, 2024 Feb;47(2):e13892.
    PMID: 38014615 DOI: 10.1111/jfd.13892
    The giant freshwater prawn holds a significant position as a valuable crustacean species cultivated in the aquaculture industry, particularly well-known and demanded among the Southeast Asian countries. Aquaculture production of this species has been impacted by Macrobrachium rosenbergii nodavirus (MrNV) infection, which particularly affects the larvae and post-larvae stages of the prawn. The infection has been recorded to cause mortality rates of up to 100% among the affected prawns. A simple, fast, and easy to deploy on-site detection or diagnostic method is crucial for early detection of MrNV to control the disease outbreak. In the present study, novel single-stranded DNA aptamers targeting the MrNV capsid protein were identified using the systematic evolution of ligands by exponential enrichment (SELEX) approach. The aptamer was then conjugated with the citrate-capped gold nanoparticles (AuNPs), and the sensitivity of this AuNP-based aptasensor for the detection of MrNV capsid protein was evaluated. Findings revealed that the aptamer candidate, APT-MrNV-CP-1 was enriched throughout the SELEX cycle 4, 9, and 12 with the sequence percentage of 1.76%, 9.09%, and 12.42%, respectively. The conjugation of APT-MrNV-CP-1 with citrate-capped AuNPs exhibited the highest sensitivity in detecting the MrNV capsid protein, where the presence of 62.5 nM of the viral capsid protein led to a significant agglomeration of the AuNPs. This study demonstrated the practicality of an AuNP-based aptasensor for disease diagnosis, particularly for detecting MrNV infection in giant freshwater prawns.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/metabolism
  3. Sivasamugham LA, Cardosa MJ, Tan WS, Yusoff K
    J Med Virol, 2006 Aug;78(8):1096-104.
    PMID: 16789020
    The complete VP1 protein of EV71 was truncated into six segments and fused to the C-terminal ends of full-length nucleocapsid protein (NPfl) and truncated NP (NPt; lacks 20% amino acid residues from its C-terminal end) of newcastle disease virus (NDV). Western blot analysis using anti-VP1 rabbit serum showed that the N-terminal region of the VP1 protein contains a major antigenic region. The recombinant proteins carrying the truncated VP1 protein, VP1(1-100), were expressed most efficiently in Escherichia coli as determined by Western blot analysis. Electron microscopic analysis of the purified recombinant protein, NPt-VP(1-100) revealed that it predominantly self-assembled into intact ring-like structures whereas NPfl-VP(1-100) recombinant proteins showed disrupted ring-like formations. Rabbits immunized with the purified NPt-VP(1-100) and NPfl-VP(1-100) exhibited a strong immune response against the complete VP1 protein. The antisera of these recombinant proteins also reacted positively with authentic enterovirus 71 and the closely related Coxsackievirus A16 when analyzed by an immunofluorescence assay suggesting their potential as immunological reagents for the detection of anti-enterovirus 71 antibodies in serum samples.
    Matched MeSH terms: Capsid/immunology*; Capsid/metabolism; Capsid Proteins/immunology*; Capsid Proteins/ultrastructure
  4. Hassan, M.D., Hazeri, M., Omar, A.R., Abba, Y., Allaudin, Z.N., Soltani, M., et al.
    Jurnal Veterinar Malaysia, 2017;29(1):1-6.
    MyJurnal
    Grouper Iriovirus (GIV) is one of the most devastating viral diseases of marine and cultured groupers worldwide. In the current study, 5 presumptive Malaysian GIV isolates were characterised through PCR amplification of the major capsid protein (MCP) gene and phylogenetic analysis of the sequences. The sequences from the five GIV isolates showed 100% homology with each other and a close relationship with grouper iridovirus isolate (GIV_Tn_352), which was clustered in group 1 together with King grouper iridovirus isolate (KGIV_Cy_346), Singapore grouper iridovirus (SGIV), and Crimson snapper iridovirus isolate (CSIV). The phylogenetic tree also showed different degree of relatedness with other Ranavirus strains which were obtained from the blast of GIV MCP gene in the NCBI database. This study confirmed the GIV isolates from Malaysia are related to other isolates that were reported previously.
    Matched MeSH terms: Capsid; Capsid Proteins
  5. Zhou H, Liu L, Li R, Qin Y, Fang Q, Balasubramaniam VR, et al.
    Virol J, 2017 08 17;14(1):156.
    PMID: 28814340 DOI: 10.1186/s12985-017-0823-4
    BACKGROUND: Astroviruses (AstVs) have been reported to infect and cause gastroenteritis in most animal species. Human AstVs were regarded the causative agent of viral diarrhea in children. In dogs, little is known about the epidemiology and clinical significance of AstV infection.

    FINDINGS: In this study, we collected and tested 253 rectal swabs from pet dogs; of which 64 samples (25.3%) tested positive for AstVs with diarrhea and 15 more samples (5.9%) also was identified as AstVs, however without any clinical signs. Phylogenetic analysis of 39 partial ORF1b sequences from these samples revealed that they are similar to AstVs, which can be subdivided into three lineages. Interestingly, out of the 39 isolates sequenced, 16 isolates are shown to be in the Mamastrovirus 5/canine astrovirus (CAstV) lineage and the remaining 23 isolates displayed higher similarities with known porcine astrovirus (PoAstV) 5 and 2. Further, analysis of 13 capsid sequences from these isolates showed that they are closely clustered with Chinese or Italy CAstV isolates.

    CONCLUSIONS: The findings indicate that CAstVs commonly circulate in pet dogs, and our sequencing results have shown the genomic diversity of CAstVs leading to increasing number of clusters.

    Matched MeSH terms: Capsid; Capsid Proteins
  6. Ho KL, Kueh CL, Beh PL, Tan WS, Bhella D
    Sci Rep, 2017 05 18;7(1):2083.
    PMID: 28522842 DOI: 10.1038/s41598-017-02292-0
    White tail disease in the giant freshwater prawn Macrobrachium rosenbergii causes significant economic losses in shrimp farms and hatcheries and poses a threat to food-security in many developing countries. Outbreaks of Macrobrachium rosenbergii nodavirus (MrNV), the causative agent of white tail disease (WTD) are associated with up to 100% mortality rates. There are no interventions available to treat or prevent MrNV disease however. Here we show the structure of MrNV virus-like particles (VLPs) produced by recombinant expression of the capsid protein, using cryogenic electron microscopy. Our data show that MrNV VLPs package nucleic acids in a manner reminiscent of other known nodavirus structures. The structure of the capsid however shows striking differences from insect and fish infecting nodaviruses, which have been shown to assemble trimer-clustered T = 3 icosahedral virus particles. MrNV particles have pronounced dimeric blade-shaped spikes extending up to 6 nm from the outer surface of the capsid shell. Our structural analysis supports the assertion that MrNV may belong to a new genus of the Nodaviridae. Moreover, our study provides the first structural view of an important pathogen affecting aquaculture industries across the world.
    Matched MeSH terms: Capsid/ultrastructure*
  7. Ong ST, Yusoff K, Kho CL, Abdullah JO, Tan WS
    J Gen Virol, 2009 Feb;90(Pt 2):392-397.
    PMID: 19141448 DOI: 10.1099/vir.0.005710-0
    The nucleocapsid protein of Nipah virus produced in Escherichia coli assembled into herringbone-like particles. The amino- and carboxy-termini of the N protein were shortened progressively to define the minimum contiguous sequence involved in capsid assembly. The first 29 aa residues of the N protein are dispensable for capsid formation. The 128 carboxy-terminal residues do not play a role in the assembly of the herringbone-like particles. A region with amino acid residues 30-32 plays a crucial role in the formation of the capsid particle. Deletion of any of the four conserved hydrophobic regions in the N protein impaired capsid formation. Replacement of the central conserved regions with the respective sequences from the Newcastle disease virus restored capsid formation.
    Matched MeSH terms: Capsid/physiology*; Nucleocapsid Proteins/genetics*; Nucleocapsid Proteins/ultrastructure; Capsid Proteins/genetics
  8. Lalani S, Masomian M, Poh CL
    Int J Mol Sci, 2021 Aug 15;22(16).
    PMID: 34445463 DOI: 10.3390/ijms22168757
    Enterovirus A71 (EV-A71) is a major neurovirulent agent capable of causing severe hand, foot and mouth disease (HFMD) associated with neurological complications and death. Currently, no FDA-approved antiviral is available for the treatment of EV-A71 infections. The flavonoid silymarin was shown to exert virucidal effects, but the binding site on the capsid was unknown. In this study, the ligand interacting site of silymarin was determined in silico and validated in vitro. Moreover, the potential of EV-A71 to develop resistance against silymarin was further evaluated. Molecular docking of silymarin with the capsid of EV-A71 indicated that silymarin binds to viral protein 1 (VP1) of EV-A71, specifically at the GH loop of VP1. The in vitro binding of silymarin with VP1 of EV-A71 was validated using recombinant VP1 through ELISA competitive binding assay. Continuous passaging of EV-A71 in the presence of silymarin resulted in the emergence of a mutant carrying a substitution of isoleucine by threonine (I97T) at position 97 of the BC loop of EV-A71. The mutation was speculated to overcome the inhibitory effects of silymarin. This study provides functional insights into the underlying mechanism of EV-A71 inhibition by silymarin, but warrants further in vivo evaluation before being developed as a potential therapeutic agent.
    Matched MeSH terms: Capsid/chemistry*; Capsid Proteins/genetics; Capsid Proteins/chemistry*
  9. Goh ZH, Mohd NAS, Tan SG, Bhassu S, Tan WS
    J Gen Virol, 2014 Sep;95(Pt 9):1919-1928.
    PMID: 24878641 DOI: 10.1099/vir.0.064014-0
    White tail disease (WTD) kills prawn larvae and causes drastic losses to the freshwater prawn (Macrobrachium rosenbergii) industry. The main causative agent of WTD is Macrobrachium rosenbergii nodavirus (MrNV). The N-terminal end of the MrNV capsid protein is very rich in positively charged amino acids and is postulated to interact with RNA molecules. N-terminal and internal deletion mutagenesis revealed that the RNA-binding region is located at positions 20-29, where 80 % of amino acids are positively charged. Substitution of all these positively charged residues with alanine abolished the RNA binding. Mutants without the RNA-binding region still assembled into virus-like particles, suggesting that this region is not a part of the capsid assembly domain. This paper is, to the best of our knowledge, the first to report the specific RNA-binding region of MrNV capsid protein.
    Matched MeSH terms: Capsid/virology; Capsid Proteins/biosynthesis*; Capsid Proteins/genetics*; Capsid Proteins/metabolism
  10. Procházková M, Füzik T, Grybchuk D, Falginella F, Podešvová L, Yurchenko V, et al.
    J Virol, 2020 Nov 18.
    PMID: 33208443 DOI: 10.1128/JVI.01957-20
    Leishmania parasites cause a variety of symptoms, including mucocutaneous leishmaniasis, which results in the destruction of the mucous membranes of the nose, mouth, and throat. The species of Leishmania carrying Leishmania RNA virus 1 (LRV1), from the family Totiviridae, are more likely to cause severe disease and are less sensitive to treatment than those that do not contain the virus. Although the importance of LRV1 for the severity of leishmaniasis was discovered a long time ago, the structure of the virus remained unknown. Here, we present a cryo-electron microscopy reconstruction of the virus-like particle of LRV1 determined to a resolution of 3.65 Å. The capsid has icosahedral symmetry and is formed by 120 copies of a capsid protein assembled in asymmetric dimers. RNA genomes of viruses from the family Totiviridae are synthetized, but not capped at the 5' end, by virus RNA-polymerases. To protect viral RNAs from degradation, capsid proteins of totivirus L-A cleave the 5' caps of host mRNAs, creating decoys to overload the cellular RNA quality control system. Capsid proteins of LRV1 form positively charged clefts, which may be the cleavage sites for the 5' cap of Leishmania mRNAs. Capsid proteins of LRV1 contain a putative RNA binding site distinct from that of the related L-A virus. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative de-capping site. Such inhibitors may be developed into a treatment for mucocutaneous leishmaniasis caused by LRV1-positive species of LeishmaniaIMPORTANCE Twelve million people worldwide suffer from leishmaniasis, resulting in more than thirty thousand deaths annually. The disease has several variants that differ in their symptoms. The mucocutaneous form, which leads to disintegration of the nasal septum, lips, and palate, is predominantly caused by Leishmania parasites carrying Leishmania RNA virus 1 (LRV1). Here, we present the structure of the LRV1 capsid determined using cryo-electron microscopy. Capsid proteins of a related totivirus L-A protect viral RNAs from degradation by cleaving the 5' caps of host mRNAs. Capsid proteins of LRV1 may have the same function. We show that the LRV1 capsid contains positively charged clefts that may be sites for the cleavage of mRNAs of Leishmania cells. The structure of the LRV1 capsid enables the rational design of compounds targeting the putative mRNA cleavage site. Such inhibitors may be used as treatments for muco-cutaneous leishmaniasis.
    Matched MeSH terms: Capsid; Capsid Proteins
  11. Mat Isa N, Mohd Ayob J, Ravi S, Mustapha NA, Ashari KS, Bejo MH, et al.
    Virusdisease, 2019 Sep;30(3):426-432.
    PMID: 31803810 DOI: 10.1007/s13337-019-00530-9
    The main aim of our study was to explore the genome sequence of the inclusion body hepatitis associated Fowl adenovirus serotype 8b (FAdV-8b) UPM04217 and to study its genomic organisation. The nucleotide sequence of the whole genome of FAdV-8b UPM04217 was determined by using the 454 Pyrosequencing platform and the Sanger sequencing method. The complete genome was found to be 44,059 bp long with 57.9% G + C content and shared 97.5% genome identity with the reference FAdV-E genome (HG isolate). Interestingly, the genome analysis using ORF Finder, Glimmer3 and FGENESV predicted a total of 39 open reading frames (ORFs) compared to the FAdV-E HG that possessed 46 ORFs. Fourteen ORFs located within the central genomic region and 16 ORFs located within the left and right ends of the genome were assigned as being the high protein-coding regions. The fusion of the small ORFs at the right end terminal specifically in ORF22 and ORF33 could be the result of gene truncation in the FAdV-E HG. The frame shift mutation in ORF25 and other mutations in ORF13 and ORF17 might have lead to the emergence of genes that could have different functions. Besides, one of the minor capsid components, pVI, in FAdV-8b UPM04217 shared the highest similarity of 93% with that of FAdV-D, while only 47% similarity was found with FAdV-E. From the gene arrangement layout of the FAdV genome, FAdV-8b UPM04217 showed intermediate evolution between the FAdV-E HG and the FAdV-D although it was apparently more similar to the FAdV-E HG.
    Matched MeSH terms: Capsid; Capsid Proteins
  12. Zuridah H
    Med J Malaysia, 2012 Oct;67(5):548.
    PMID: 23770884
    Matched MeSH terms: Capsid Proteins
  13. Selvaraj BA, Mariatulqabtiah AR, Ho KL, Ng CL, Yong CY, Tan WS
    Int J Mol Sci, 2021 Aug 13;22(16).
    PMID: 34445426 DOI: 10.3390/ijms22168725
    The causative agent of white tail disease (WTD) in the giant freshwater prawn is Macrobrachium rosenbergii nodavirus (MrNV). The recombinant capsid protein (CP) of MrNV was previously expressed in Escherichia coli, and it self-assembled into icosahedral virus-like particles (VLPs) with a diameter of approximately 30 nm. Extensive studies on the MrNV CP VLPs have attracted widespread attention in their potential applications as biological nano-containers for targeted drug delivery and antigen display scaffolds for vaccine developments. Despite their advantageous features, the recombinant MrNV CP VLPs produced in E. coli are seriously affected by protease degradations, which significantly affect the yield and stability of the VLPs. Therefore, the aim of this study is to enhance the stability of MrNV CP by modulating the protease degradation activity. Edman degradation amino acid sequencing revealed that the proteolytic cleavage occurred at arginine 26 of the MrNV CP. The potential proteases responsible for the degradation were predicted in silico using the Peptidecutter, Expasy. To circumvent proteolysis, specific protease inhibitors (PMSF, AEBSF and E-64) were tested to reduce the degradation rates. Modulation of proteolytic activity demonstrated that a cysteine protease was responsible for the MrNV CP degradation. The addition of E-64, a cysteine protease inhibitor, remarkably improved the yield of MrNV CP by 2.3-fold compared to the control. This innovative approach generates an economical method to improve the scalability of MrNV CP VLPs using individual protease inhibitors, enabling the protein to retain their structural integrity and stability for prominent downstream applications including drug delivery and vaccine development.
    Matched MeSH terms: Capsid Proteins/genetics*; Capsid Proteins/metabolism*; Capsid Proteins/chemistry
  14. Ho KL, Gabrielsen M, Beh PL, Kueh CL, Thong QX, Streetley J, et al.
    PLoS Biol, 2018 Oct;16(10):e3000038.
    PMID: 30346944 DOI: 10.1371/journal.pbio.3000038
    Macrobrachium rosenbergii nodavirus (MrNV) is a pathogen of freshwater prawns that poses a threat to food security and causes significant economic losses in the aquaculture industries of many developing nations. A detailed understanding of the MrNV virion structure will inform the development of strategies to control outbreaks. The MrNV capsid has also been engineered to display heterologous antigens, and thus knowledge of its atomic resolution structure will benefit efforts to develop tools based on this platform. Here, we present an atomic-resolution model of the MrNV capsid protein (CP), calculated by cryogenic electron microscopy (cryoEM) of MrNV virus-like particles (VLPs) produced in insect cells, and three-dimensional (3D) image reconstruction at 3.3 Å resolution. CryoEM of MrNV virions purified from infected freshwater prawn post-larvae yielded a 6.6 Å resolution structure, confirming the biological relevance of the VLP structure. Our data revealed that unlike other known nodavirus structures, which have been shown to assemble capsids having trimeric spikes, MrNV assembles a T = 3 capsid with dimeric spikes. We also found a number of surprising similarities between the MrNV capsid structure and that of the Tombusviridae: 1) an extensive network of N-terminal arms (NTAs) lines the capsid interior, forming long-range interactions to lace together asymmetric units; 2) the capsid shell is stabilised by 3 pairs of Ca2+ ions in each asymmetric unit; 3) the protruding spike domain exhibits a very similar fold to that seen in the spikes of the tombusviruses. These structural similarities raise questions concerning the taxonomic classification of MrNV.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/ultrastructure; Capsid Proteins/chemistry
  15. Nomikou K, Dovas CI, Maan S, Anthony SJ, Samuel AR, Papanastassopoulou M, et al.
    PLoS One, 2009;4(7):e6437.
    PMID: 19649272 DOI: 10.1371/journal.pone.0006437
    Bluetongue virus (BTV) is the 'type' species of the genus Orbivirus within the family Reoviridae. The BTV genome is composed of ten linear segments of double-stranded RNA (dsRNA), each of which codes for one of ten distinct viral proteins. Previous phylogenetic comparisons have evaluated variations in genome segment 3 (Seg-3) nucleotide sequence as way to identify the geographical origin (different topotypes) of BTV isolates. The full-length nucleotide sequence of genome Seg-3 was determined for thirty BTV isolates recovered in the eastern Mediterranean region, the Balkans and other geographic areas (Spain, India, Malaysia and Africa). These data were compared, based on molecular variability, positive-selection-analysis and maximum-likelihood phylogenetic reconstructions (using appropriate substitution models) to 24 previously published sequences, revealing their evolutionary relationships. These analyses indicate that negative selection is a major force in the evolution of BTV, restricting nucleotide variability, reducing the evolutionary rate of Seg-3 and potentially of other regions of the BTV genome. Phylogenetic analysis of the BTV-4 strains isolated over a relatively long time interval (1979-2000), in a single geographic area (Greece), showed a low level of nucleotide diversity, indicating that the virus can circulate almost unchanged for many years. These analyses also show that the recent incursions into south-eastern Europe were caused by BTV strains belonging to two different major-lineages: representing an 'eastern' (BTV-9, -16 and -1) and a 'western' (BTV-4) group/topotype. Epidemiological and phylogenetic analyses indicate that these viruses originated from a geographic area to the east and southeast of Greece (including Cyprus and the Middle East), which appears to represent an important ecological niche for the virus that is likely to represent a continuing source of future BTV incursions into Europe.
    Matched MeSH terms: Capsid Proteins/classification; Capsid Proteins/genetics*
  16. NikNadia N, Tan CW, Ong KC, Sam IC, Chan YF
    J Med Virol, 2018 06;90(6):1164-1167.
    PMID: 29457642 DOI: 10.1002/jmv.25061
    Enterovirus A71 (EV-A71) neutralization escape mutants were generated with monoclonal antibody MAB979 (Millipore). The VP2-T141I and VP1-D14N substitutions were identified. Using reverse genetics, infectious clones with these substitutions were constructed and tested by neutralization assay with immune sera from mice and humans. The N-terminus VP1-14 is more important than EF loop VP2-141 in acute human infection, mainly because it recognised IgM present in acute infection. The N-terminus VP1 could be a useful target for diagnostics and therapeutic antibodies in acute infection.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/immunology*
  17. Goh ZH, Tan SG, Bhassu S, Tan WS
    J Virol Methods, 2011 Jul;175(1):74-9.
    PMID: 21536072 DOI: 10.1016/j.jviromet.2011.04.021
    Macrobrachium rosenbergii nodavirus (MrNv) infects giant freshwater prawns and causes white tail disease (WTD). The coding region of the capsid protein of MrNv was amplified with RT-PCR and cloned into the pTrcHis2-TOPO vector. The recombinant plasmid was introduced into Escherichia coli and protein expression was induced with IPTG. SDS-PAGE showed that the recombinant protein containing the His-tag and myc epitope has a molecular mass of about 46 kDa and it was detected by the anti-His antibody in Western blotting. The protein was purified using immobilized metal affinity chromatography (IMAC) and transmission electron microscopic analysis revealed that the recombinant protein assembled into virus-like particles (VLPs) with a diameter of about 30±3 nm. The size of the particles was confirmed by dynamic light scattering. Nucleic acids were extracted from the VLPs and treatment with nucleases showed that they were mainly RNA molecules. This is the first report describing the production of MrNv capsid protein in bacteria and its assembly into VLPs.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/metabolism
  18. Mandary MB, Masomian M, Ong SK, Poh CL
    Viruses, 2020 Jun 17;12(6).
    PMID: 32560288 DOI: 10.3390/v12060651
    Viral plaque morphologies in human cell lines are markers for growth capability and they have been used to assess the viral fitness and selection of attenuated mutants for live-attenuated vaccine development. In this study, we investigate whether the naturally occurring plaque size variation reflects the virulence of the variants of EV-A71. Variants of two different plaque sizes (big and small) from EV-A71 sub-genotype B4 strain 41 were characterized. The plaque variants displayed different in vitro growth kinetics compared to the parental wild type. The plaque variants showed specific mutations being present in each variant strain. The big plaque variants showed four mutations I97L, N104S, S246P and N282D in the VP1 while the small plaque variants showed I97T, N237T and T292A in the VP1. No other mutations were detected in the whole genome of the two variants. The variants showed stable homogenous small plaques and big plaques, respectively, when re-infected in rhabdomyosarcoma (RD) and Vero cells. The parental strain showed faster growth kinetics and had higher viral RNA copy number than both the big and small plaque variants. Homology modelling shows that both plaque variants have differences in the structure of the VP1 protein due to the presence of unique spontaneous mutations found in each plaque variant This study suggests that the EV-A71 sub-genotype B4 strain 41 has at least two variants with different plaque morphologies. These differences were likely due to the presence of spontaneous mutations that are unique to each of the plaque variants. The ability to maintain the respective plaque morphology upon passaging indicates the presence of quasi-species in the parental population.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/metabolism
  19. Yap CF, Tan WS, Sieo CC, Tey BT
    Biotechnol Prog, 2013 Mar-Apr;29(2):564-7.
    PMID: 23364925 DOI: 10.1002/btpr.1697
    NP(Δc375) is a truncated version of the nucleocapsid protein of Newcastle disease virus (NDV) which self-assembles into a long helical structure. A packed bed anion exchange chromatography (PB-AEC), SepFastTM Supor Q pre-packed column, was used to purify NP(Δc375) from clarified feedstock. This PB-AEC column adsorbed 76.2% of NP(Δc375) from the clarified feedstock. About 67.5% of the adsorbed NP(Δc375) was successfully eluted from the column by applying 50 mM Tris-HCl elution buffer supplemented with 0.5 M NaCl at pH 7. Thus, a recovery yield of 51.4% with a purity of 76.7% which corresponds to a purification factor of 6.5 was achieved in this PB-AEC operation. Electron microscopic analysis revealed that the helical structure of the NP(Δc375) purified by SepFast(TM) Supor Q pre-packed column was as long as 490 nm and 22-24 nm in diameter. The antigenicity of the purified NP(Δc375) was confirmed by enzyme-linked immunosorbent assay.
    Matched MeSH terms: Capsid Proteins/genetics; Capsid Proteins/isolation & purification*; Capsid Proteins/metabolism; Capsid Proteins/chemistry
  20. Lee KW, Tey BT, Ho KL, Tejo BA, Tan WS
    Mol Pharm, 2012 Sep 4;9(9):2415-23.
    PMID: 22775561 DOI: 10.1021/mp200389t
    Cell-internalizing peptides (CIPs) can be used to mediate specific delivery of nanoparticles across cellular membrane. The objective of this study was to develop a display technique using hepatitis B virus (HBV) capsid-binding peptide as a "nanoglue" to present CIPs on HBV nanoparticles for cell-targeting delivery. A CIP was selected from a phage display library and cross-linked specifically at the tips of the spikes of the HBV capsid nanoparticle via the "nanoglue" by using 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysulfosuccinimide (sulfo-NHS). Fluorescent oligonucleotides packaged in the nanoparticles and the fluorescein molecules conjugated on the nanoparticles were delivered to cells by using this display technique. This study demonstrated a proof of principle for cell-targeting delivery via "nanoglue" bioconjugation.
    Matched MeSH terms: Capsid/metabolism; Capsid Proteins/pharmacokinetics*; Capsid Proteins/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links