Displaying publications 1 - 20 of 85 in total

  1. Babar ZM, Azizi WM, Ichwan SJ, Ahmed QU, Azad AK, Mawa I
    Nat Prod Res, 2019 Aug;33(15):2266-2270.
    PMID: 30037274 DOI: 10.1080/14786419.2018.1493587
    The current study provides a way of extraction for both active NSO and WSE from Nigella sativa seeds using 98% methanol. About 1 kg of ground seeds was macerated by 1:2.5 w/v (g/mL) for 72 hours. After rotary evaporation and 7 days of continuous drying and chilling at 50 and 4 °C, NSO and WSE were obtained at the same instant. Solubility tests of 24 solvents and 11 thin layer chromatographic analyses while 2, 2-diphenyl-1-picrylhydrazyl free radical scavenging assay of NSO (73.66) , WSE (33.32) and NSO + WSE (78.22) against ascorbic acid (IC50 = 4.28 mg/mL) was performed. WSE was found to be highly soluble in water and 5% NaOH exhibiting the same Rf value of 0.95 for EtOH:DMSO (9:1) against the honey. WSE has revealed more than twofold higher anti-oxidant activity than others. Formulation of WSE with Tualang honey may provide better targeted hydrophilic drug delivery systems.
    Matched MeSH terms: Chromatography, Thin Layer/methods
  2. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tan WK, et al.
    J Pharm Biomed Anal, 2023 Apr 01;227:115308.
    PMID: 36827737 DOI: 10.1016/j.jpba.2023.115308
    Extracts of two Salvia species, Salvia apiana (white sage) and Salvia officinalis (common sage) were screened for phytoconstituents with the ability to act as antidiabetic, cognitive enhancing, or antimicrobial agents, by hyphenation of high-performance thin-layer chromatography with enzymatic and microbial effect directed assays. Two bioactive zones with α-amylase inhibition (zone 1 and zone 2), 3 zones for acetylcholinesterase inhibition (zones 3, 4 and 5), and two zones for antimicrobial activity (zones 4 and 5) were detected. The compounds from the five bioactive zones were initially identified by coelution with standards and comparing the RF values of standards to the bioautograms. Identity was confirmed with ATR-FTIR spectra of the isolated compounds from the bioactive zones. A significantly higher α-amylase and acetylcholinesterase inhibition of S. apiana leaf extract was associated with a higher flavonoid and diterpenoid content. Fermented S. officinalis extract exhibited a significantly higher ability to inhibit α-amylase compared to other non-fermented extracts from this species, due to increased extraction of flavonoids. The ATR-FTIR spectra of 2 zones with α-amylase inhibition, indicated that flavonoids and phenolic acids were responsible for α-amylase inhibition. Multiple zones of acetylcholinesterase inhibition were related to the presence of phenolic abietane diterpenoids and triterpenoid acids. The presence of abietane diterpenoids and triterpenoid acids was also found responsible for the mild antimicrobial activity. Flash chromatography was used to isolate sufficient amounts of bioactive compounds for further characterisation via NMR and MS spectroscopy. Five compounds were assigned to the zones where bioactivity was observed: cirsimaritin (zone 1), a caffeic acid polymer (zone 2), 16-hydroxyrosmanol (zone 3), 16-hydroxycarnosic acid (zone 4), oleanolic and ursolic acids (zone 5).
    Matched MeSH terms: Chromatography, Thin Layer/methods
  3. Rahmawati R, Hartati YW, Latip JB, Herlina T
    J Sep Sci, 2023 Jun;46(12):e2200800.
    PMID: 36715692 DOI: 10.1002/jssc.202200800
    Plants in the genus Erythrina is a potential source of chemical constituents, one of which is flavonoids, which have diverse bioactivities. To date, literature on the flavonoids from the genus Erythrina has only highlighted the phytochemical aspects, so this review article will discuss isolation techniques and strategies for the first time. More than 420 flavonoids have been reported in the Erythrina genus, which are grouped into 17 categories. These flavonoid compounds were obtained through isolation techniques and strategies using polar, semi-polar, and non-polar solvents. Various chromatographic techniques have been developed to isolate flavonoids using column flash chromatography, quick column chromatography, centrifugally accelerated thin-layer chromatography, radial chromatography, medium-pressure column chromatography, semi-preparative high-performance liquid chromatography, and preparative high-performance liquid chromatography. Chromatographic processes for isolating flavonoids can be optimized using multivariate statistical applications such as response surface methodology with central composite design, Box-Behnken design, Doehlert design, and mixture design.
    Matched MeSH terms: Chromatography, Thin Layer
  4. Maziah M, Rosli N
    Methods Mol Biol, 2009;547:359-69.
    PMID: 19521859 DOI: 10.1007/978-1-60327-287-2_29
    Plant cell culture technology is potentially useful in producing high-valued secondary metabolites. Eurycoma longifolia root extracts are consumed as a health tonic but more popularly used as an aphrodisiac. Studies on the aphrodisiac properties and the possible compounds involved have been widely studied. There are many potentially useful compounds reported from the root extracts of E. longifolia. However, studies on the in vitro production of useful compounds from this plant have not been reported. This chapter will describe methods of callus induction and extraction of 9-methoxycanthin-6-one from E. longifolia Jack explants with emphasis on the tap and fibrous roots. This compound, known to have anti-tumour activity, is present in intact plant parts and in callus tissues of different explants.
    Matched MeSH terms: Chromatography, Thin Layer
  5. Rajudin E, Ahmad F, Sirat HM, Arbain D, Aboul-Enein HY
    Nat Prod Res, 2010 Mar;24(4):387-90.
    PMID: 20221945 DOI: 10.1080/14786410903421826
    Seven flavonoid compounds have been isolated from the aerial parts of tiger's betel (Piper porphyrophyllum), which were identified as 5,7-dimethoxyflavone, 4',5,7-trimethoxy-flavone, 3',4',5,7-tetramethoxyflavone, 4'-hydroxy-3',5,7-trimethoxyflavone, 5-hydroxy-3',4',7-trimethoxyflavone, 4',5-dihydroxy-3',7-dimethoxyflavone and 5-hydroxy-7-methoxyflavanone. The identification of all compounds was achieved by physical properties and spectroscopically. These data were also confirmed by comparison with previously reported spectral data. Flavonoid compounds with high content in P. porphyrophyllum can probably be used as a chemical marker for this Piper species.
    Matched MeSH terms: Chromatography, Thin Layer
  6. Mustarichie R, Salsabila T, Iskandar Y
    J Pharm Bioallied Sci, 2019 Dec;11(Suppl 4):S611-S618.
    PMID: 32148372 DOI: 10.4103/jpbs.JPBS_205_19
    Background: The katuk leaf (Sauropus androgynous (L.) Merr.) is one of the plants that are used to overcome baldness by the people of Kampung Mak Kemas, Malaysia. It is suspected that secondary metabolites contained in katuk leaves play a key role in stimulating hair growth.

    Aims and Objectives: The aim of this study was to identify the optimum method to obtain one of the chemical compounds in the water fraction and to identify the hypothesized chemical isolates in the water fraction katuk leave's ethanol extract.

    Materials and Methods: The methods used in this study included the collection and determination of the katuk plant, the processing of the katuk, phytochemical filtrating, extracting with ethanol 96%, and fractionation using the liquid-liquid extraction method with n-hexane, ethyl acetate, and water solvents The water fraction of katuk leaves was analyzed by its components by thin-layer chromatography using the stationary phase of silica gel 60 F254, developer of n-butanol:acetic acid:water (4:1:5), and detection under ultraviolet (UV) light at a wavelength of 366 and 254nm, as well as with vanillin-sulfuric acid reagent. To isolate the compounds from water fraction of katuk leaves, it was then eluted with a vacuum column chromatography by eluent with a level polarity that would get 11 subfractions. Each subfraction was checked by two-dimensional thin-layer chromatography to see subfraction purity characterized by the appearance of a spot on the chromatogram plate. The isolate was analyzed using spot test, ultraviolet-visible spectrophotometer, infrared spectrophotometer, and liquid chromatography-mass spectrometry.

    Results: The isolate was an alkaloid compound with a molecular mass of 406.3131 m/z with the molecular formula C21H39N6O2 as S, S-5, 5'-amino-4,4'-dihexyl-propyldihydropyrazol-3, 3-one.

    Conclusion: One of the chemical compounds contained in the water fraction of the ethanol extract of the katuk leaf was an alkaloid group.

    Matched MeSH terms: Chromatography, Thin Layer
  7. Agatonovic-Kustrin S, Wong S, Dolzhenko AV, Gegechkori V, Ku H, Tucci J, et al.
    J Chromatogr A, 2023 Sep 13;1706:464241.
    PMID: 37541060 DOI: 10.1016/j.chroma.2023.464241
    This study compares different solvent systems with the use of spontaneous fermentation on the phytochemical composition of leaf extracts from a locally grown white variety of common fig (Ficus carica Linn.). The aim was to detect and identify bioactive compounds that are responsible for acetylcholinesterase (AChE), α-amylase and cyclooxygenase-1 (COX-1) enzyme inhibition, and compounds that exhibit antimicrobial activity. Bioactive zones in chromatograms were detected by combining High-performance thin-layer chromatography (HPTLC) with enzymatic and biological assays. A new experimental protocol for measuring the relative half-maximum inhibitory concentration (IC50) was designed to evaluate the potency of the extracts compared to the potency of known inhibitors. Although the IC50 of the fig leaf extract for α-amylase and AChE inhibition were significantly higher when compared to IC50 for acarbose and donepezil, the COX-1 inhibition by the extract (IC50 = 627 µg) was comparable to that of salicylic acid (IC50 = 557 µg), and antimicrobial activity of the extract (IC50 = 375-511 µg) was similar to ampicillin (IC50 = 495 µg). Four chromatographic zones exhibited bioactivity. Compounds from detected bioactive bands were provisionally identified by comparing the band positions to coeluted standards, and by Fourier transform infrared (FTIR) spectra from eluted zones. Flash chromatography was used to separate selected extract into fractions and isolate fractions that are rich in bioactive compounds for further characterisation with nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry (LC-MS) analysis. The main constituents identified were umbelliferon (zone 1), furocoumarins psoralen and bergapten (zone 2), different fatty acids (zone 3 and 4), and pentacyclic triterpenoids (calotropenyl acetate or lupeol) and stigmasterol (zone 4).
    Matched MeSH terms: Chromatography, Thin Layer
  8. Sharif KM, Rahman MM, Azmir J, Khatib A, Sabina E, Shamsudin SH, et al.
    Biomed Chromatogr, 2015 Dec;29(12):1826-33.
    PMID: 26033701 DOI: 10.1002/bmc.3503
    Multivariate analysis of thin-layer chromatography (TLC) images was modeled to predict antioxidant activity of Pereskia bleo leaves and to identify the contributing compounds of the activity. TLC was developed in optimized mobile phase using the 'PRISMA' optimization method and the image was then converted to wavelet signals and imported for multivariate analysis. An orthogonal partial least square (OPLS) model was developed consisting of a wavelet-converted TLC image and 2,2-diphynyl-picrylhydrazyl free radical scavenging activity of 24 different preparations of P. bleo as the x- and y-variables, respectively. The quality of the constructed OPLS model (1 + 1 + 0) with one predictive and one orthogonal component was evaluated by internal and external validity tests. The validated model was then used to identify the contributing spot from the TLC plate that was then analyzed by GC-MS after trimethylsilyl derivatization. Glycerol and amine compounds were mainly found to contribute to the antioxidant activity of the sample. An alternative method to predict the antioxidant activity of a new sample of P. bleo leaves has been developed.
    Matched MeSH terms: Chromatography, Thin Layer/methods*
  9. Ong KK, Khor HT, Tan DT
    Anal Biochem, 1991 Aug 01;196(2):211-4.
    PMID: 1776669
    A rapid, easy, and sensitive method is described in this paper for the assay of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, a key enzyme in cholesterol biosynthesis. [14C]HMG CoA was used as the substrate and the product formed, i.e., [14C]mevalonate, was allowed to be converted to its lactone form (mevalonolactone) in the presence of HCl. The reaction mixture was applied to a column containing an anionic exchanger. The column was made up of QAE-Sephadex (A25, formate form) packed to a height of 4 cm in Pasteur pipets. Under these conditions, mevalonolactone was not retained by the column and was eluted with ammonium formate solution while HMG CoA, being negatively charged, was retained by the gel and eluted by HCl above 0.05 M. Determination of the amount of radioactivity in mevalonolactone was then used to quantitate the activity of HMG CoA reductase. This assay has been successfully used for determining the activity of this enzyme in a microsomal fraction prepared from the liver of the rat.
    Matched MeSH terms: Chromatography, Thin Layer/methods
  10. Syakila RN, Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    Anal Bioanal Chem, 2019 Feb;411(6):1181-1192.
    PMID: 30680424 DOI: 10.1007/s00216-018-1544-2
    The cholesterol-lowering properties of 12 lactic acid bacteria (LAB) in the absence or presence of 0.3% bile salts were assessed and compared quantitatively and qualitatively in vitro. A new, more sensitive and cost-effective high-performance thin-layer chromatography method combined with digital image evaluation of derivatised chromatographic plates was developed and validated to quantify cholesterol in LAB culture media. The performance of the method was compared with that of the o-phthalaldehyde method. For qualitative assessment, assimilated fluorescently tagged cholesterol was visualised by confocal microscopy. All LAB strains exhibited a cholesterol-lowering effect of various degrees (19-59% in the absence and 14-69% in the presence of bile salts). Lactobacillus plantarum LAB12 and Pentosaceus pentosaceus LAB6 were the two best strains of lactobacilli and pediococci. They lowered cholesterol levels by 59% and 54%, respectively, in the absence and by 69% and 58%, respectively, in the presence of bile salts. Confocal microscopy showed that cholesterol was localised at the outermost cell membranes of LAB12 and LAB6. The present findings warrant in-depth in vivo study. Graphical abstract (A) 3D plots based on scan at 525 nm of (B) derivatized HPTLC plate of separated cholesterol and (C) confocal microscopic image showing the localisation of NBD-cholesterol assimilated by LAB.
    Matched MeSH terms: Chromatography, Thin Layer/methods*
  11. Agatonovic-Kustrin S, Morton DW, Ristivojević P
    J Chromatogr A, 2016 Oct 14;1468:228-235.
    PMID: 27670751 DOI: 10.1016/j.chroma.2016.09.041
    The aim of this study was to develop and validate a rapid and simple high performance thin layer chromatographic (HPTLC) method to screen for antioxidant activity in algal samples. 16 algal species were collected from local Victorian beaches. Fucoxanthin, one of the most abundant marine carotenoids was quantified directly from the HPTLC plates before derivatization, while derivatization either with 2,2-diphenyl-1-picrylhydrazyl (DPPH) or ferric chloride (FeCl3) was used to analyze antioxidants in marine algae, based on their ability to scavenge non biological stable free radical (DPPH) or to chelate iron ions. Principal component analysis of obtained HPTLC fingerprints has classified algae species into 5 groups according to their chemical/antioxidant profiles. The investigated brown algae samples were found to be rich in non-and moderate-polar compounds and phenolic compounds with antioxidant activity. Most of the phenolic iron chelators also have shown free radical scavenging activity. Strong positive and significant correlations between total phenolic content and DPPH radical scavenging activity showed that, phenolic compounds, including flavonoids are the main contributors of antioxidant activity in these species. The results suggest that certain brown algae possess significantly higher antioxidant potential when compared to red or green algae and could be considered for future applications in medicine, dietary supplements, cosmetics or food industries. Cystophora monilifera extract was found to have the highest antioxidant concentration, followed by Zonaria angustata, Cystophora pectinate, Codium fragile, and Cystophora pectinata. Fucoxanthin was found mainly in the brown algae species. The proposed methods provide an edge in terms of screening for antioxidants and quantification of antioxidant constituents in complex mixtures. The current application also demonstrates flexibility and versatility of a standard HPTLC system in the drug discovery. Proposed methods could be used for the bioassay-guided isolation of unknown natural antioxidants and subsequent identification if combined with spectroscopic identification.
    Matched MeSH terms: Chromatography, Thin Layer/methods
  12. Kassim NK, Lim PC, Ismail A, Awang K
    Food Chem, 2019 Jan 30;272:185-191.
    PMID: 30309531 DOI: 10.1016/j.foodchem.2018.08.045
    The application of preparative thin layer chromatography-2,2-diphenyl-1-picrylhydrazyl (PTLC-DPPH) bioautography technique successfully isolated a lignan sesamin (1), two prenylated coumarins (2 and 3) and a marmesin glycosides (4) from Micromelum minutum methanol bark extract. Compounds 2 and 3 were identified as new compounds whereas 1 and 4 were first isolated from Micromelum genus. Structural identification of all compounds were done by detailed spectroscopic analyses and comparison with literature data. Antioxidant capacities of extract, active fraction and compounds were measured based on DPPH free radical savenging activity, oxygen radical absorbance capacity (ORAC) and β-carotene bleaching. The DPPH activity of methanol extract and its fraction present the IC50 values of 54.3 and 168.9 µg/mL meanwhile the β-carotene bleaching results were 55.19% and 5.75% respectively. The ORAC measurements of M. minutum extract, compounds 2 and 4 showed potent antioxidant activity with the values of 5123, 5539 and 4031 µmol TE/g respectively.
    Matched MeSH terms: Chromatography, Thin Layer/methods*
  13. Jafarzade M, Yahya NA, Shayesteh F, Usup G, Ahmad A
    J Microbiol, 2013 Jun;51(3):373-9.
    PMID: 23812818 DOI: 10.1007/s12275-013-2440-2
    This study was undertaken to investigate the influence of culture conditions and medium components on production of antibacterial compounds by Serratia sp. WPRA3 (JX020764) which was isolated from marine water of Port Dickson, Malaysia. Biochemical, morphological, and molecular characteristics suggested that the isolate is a new candidate of the Serratia sp. The isolate showed strong antimicrobial activity against fungi, Gram-negative and Gram-positive bacteria. This bacterium exhibited optimum antibacterial compounds production at 28°C, pH 7 and 200 rev/min aeration during 72 h of incubation period. Highest antibacterial activity was obtained when sodium chloride (2%), yeast extract (0.5%), and glucose concentration (0.75%) were used as salt, nitrogen, and carbon sources respectively. Different active fractions were obtained by Thin-Layer Chromatography (TLC) and Flash Column Chromatography (FCC) from ethyl acetate crude extracts namely OCE and RCE in different culture conditions, OCE (pH 5, 200 rev/min) and RCE (pH 7/without aeration). In conclusion, the results suggested different culture conditions have a significant impact on the types of secondary metabolites produced by the bacterium.
    Matched MeSH terms: Chromatography, Thin Layer
  14. Hadibarata T, Teh ZC, Rubiyatno, Zubir MM, Khudhair AB, Yusoff AR, et al.
    Bioprocess Biosyst Eng, 2013 Oct;36(10):1455-61.
    PMID: 23334282 DOI: 10.1007/s00449-013-0884-8
    The use of biomaterials or microorganisms in PAHs degradation had presented an eye-catching performance. Pleurotus eryngii is a white rot fungus, which is easily isolated from the decayed woods in the tropical rain forest, used to determine the capability to utilize naphthalene, a two-ring polycyclic aromatic hydrocarbon as source of carbon and energy. In the meantime, biotransformation of naphthalene to intermediates and other by-products during degradation was investigated in this study. Pleurotus eryngii had been incubated in liquid medium formulated with naphthalene for 14 days. The presence of metabolites of naphthalene suggests that Pleurotus eryngii begin the ring cleavage by dioxygenation on C1 and C4 position to give 1,4-naphthaquinone. 1,4-Naphthaquinone was further degraded to benzoic acid, where the proposed terepthalic acid is absent in the cultured extract. Further degradation of benzoic acid by Pleurotus eryngii shows the existence of catechol as a result of the combination of decarboxylation and hydroxylation process. Unfortunately, phthalic acid was not detected in this study. Several enzymes, including manganese peroxidase, lignin peroxidase, laccase, 1,2-dioxygenase and 2,3-dioxygenase are enzymes responsible for naphthalene degradation. Reduction of naphthalene and the presence of metabolites in liquid medium showed the ability of Pleurotus eryngii to utilize naphthalene as carbon source instead of a limited glucose amount.
    Matched MeSH terms: Chromatography, Thin Layer
  15. Ismai BS, Enoma AO, Cheah UB, Lum KY, Malik Z
    J Environ Sci Health B, 2002 Jul;37(4):355-64.
    PMID: 12081027
    Laboratory studies utilizing radioisotopic techniques were conducted to determine the adsorption, desorption, and mobility of endosulfan (6,7,8,9,10,10-hexachloro-1,5,5a,6,9,9a-hexahydro-6,9-methano-2,4,3-benzodioxanthiepin3-oxide) and methamidophos (O,S-dimethyl phosphorothioate) in sandy loam and clay soils of the Cameron Highlands and the Muda rice-growing area, respectively. High Freundlich adsorption distribution coefficients [Kads(f)] for endosulfan (6.74 and 18.75) and low values for methamidophos (0.40 and 0.98) were obtained in the sandy loam and clay soils, respectively. The observed Koc values for endosulfan were 350.85 (sandy loam) and 1143.19 (clay) while Koc values of 20.92 (sandy loam) and 59.63 (clay) were obtained for methamidophos. Log Kow of 0.40 and 1.25 were calculated for endosulfan as well as -1.96 and -1.21 for methamidophos in the sandy loam and clay soils, respectively. Desorption was common to both pesticides but the desorption capacity of methamidophos from each soil type far exceeded that of endosulfan. Soil thin layer chromatography (TLC) and column studies showed that while methamidophos was very mobile in both soils, endosulfan displayed zero mobility in clay soil.
    Matched MeSH terms: Chromatography, Thin Layer
  16. Rajananda V, Nair NK, Navaratnam V
    Bull Narc, 1985 Jan-Mar;37(1):35-47.
    PMID: 4063572
    The authors selected 38 thin-layer-chromatography (TLC) systems described in the available literature published over the last 10 years and evaluated those systems with respect to their suitability for detection and identification of opiates in urine, opium and heroin, as well as adulterants in heroin. A total of 14 substances: 8 opiates (morphine, 6-monoacetylmorphine, diacetylmorphine, codeine, acetylcodeine, noscapine, papaverine and thebaine) and 6 adulterants (ephedrine, quinine, methadone, caffeine, cocaine and strychnine) were used as test samples for this research. Using laboratory-coated plates and pre-coated plates, 15 and 13 TLC systems, respectively, were found to be able to detect and identify morphine and codeine in urine without interference from the remaining 12 substances. For the detection of opiates in opium samples as well as opiates and adulterants in illicit heroin samples the TLC system: chloroform-n-hexane-triethylamine (9:9:4) which was developed by the National Drug Research Centre, Penang, Malaysia, was found to be most suitable on both laboratory-coated and pre-coated plates. In addition, the following two systems, one on laboratory-coated plates--hexane-chloroform-diethylamine (50:30:7)--and the other on pre-coated plates--benzene-dioxane-ethanol-ammonia (50:40:5:5; T-7)--were also found to be among most suitable TLC systems for the analysis of opiates in opium samples. The article also presents the relative cost of each of the 38 evaluated TLC systems.
    Matched MeSH terms: Chromatography, Thin Layer
  17. Duraipandi S, Selvakumar V
    J Ayurveda Integr Med, 2019 01 08;11(3):224-227.
    PMID: 30635246 DOI: 10.1016/j.jaim.2018.01.008
    BACKGROUND: Anu Tailam, an Ayurvedic medicated oil where 'anu' meant for atom and 'tailam' meant for oil and virtually meant for 'oil of subtle or atomic size particles'. Since the major active ingredients in this formulation are incorporated from the polyherbal decoction, it is expected to contain predominantly water soluble ingredients.

    OBJECTIVES: It is hypothesized that these polar active botanical ingredients are present in the formulation should be either suspended in the form of submicron particles or entrapped in the submicron vesicular structures since the formulation did not show any precipitation or phase separation instead showed a monophasic oily liquid with very little moisture.

    MATERIALS AND METHODS: In the present investigation, the micro architecture of the anu tailam is studied via column chromatography and high performance thin layer chromatography to prove the contents are polar hydrophilic compounds followed by optical microscopy, photon correlation Spectroscopy (PCS) and environmental scanning electron microscope (ESEM) to study the particle/vesicle size of the formulation.

    RESULTS: In this study, it was proved that the formulation contained only polar ingredients and can be extracted in polar solvents like methanol and ethanol. It was also found that the formulation taken for study contained nano particles of the active botanical ingredients embedded in a network of vesicular structures of the lipid base.

    CONCLUSION: The selected Ayurvedic formulation 'anutailam' found to contain novel nano drug delivery system to deliver water soluble ingredients across barriers.

    Matched MeSH terms: Chromatography, Thin Layer
  18. Zahari R, Halimoon N, Ahmad MF, Ling SK
    Int J Anal Chem, 2018;2018:8150610.
    PMID: 29692811 DOI: 10.1155/2018/8150610
    Rigidoporus microporus, Ganoderma philippii, and Phellinus noxius are root rot rubber diseases and these fungi should be kept under control with environmentally safe compounds from the plant sources. Thus, an antifungal compound isolated from Catharanthus roseus was screened for its effectiveness in controlling the growth of these fungi. The antifungal compound isolated from C. roseus extract was determined through thin layer chromatography (TLC) and nuclear magnetic resonance (NMR) analysis. Each C. roseus of the DCM extracts was marked as CRD1, CRD2, CRD3, CRD4, CRD5, CRD6, and CRD7, respectively. TLC results showed that all of the C. roseus extracts peaked with red colour at Rf = 0.61 at 366 nm wavelength, except for CRD7. The CRD4 extract was found to be the most effective against R. microporus and G. philippii with inhibition zones of 3.5 and 1.9 mm, respectively, compared to that of other extracts. These extracts, however, were not effective against P. noxius. The CRD4 extract contained ursolic acid that was detected by NMR analysis and the compound could be developed as a biocontrol agent for controlling R. microporus and G. philippii. Moreover, little or no research has been done to study the effectiveness of C. roseus in controlling these fungi.
    Matched MeSH terms: Chromatography, Thin Layer
  19. Lim SM, Agatonovic-Kustrin S, Lim FT, Ramasamy K
    J Pharm Biomed Anal, 2021 Jan 30;193:113702.
    PMID: 33160220 DOI: 10.1016/j.jpba.2020.113702
    Bioactive compounds from endophytic fungi exhibit diverse biological activities which include anticancer effect. Capitalising on the abundance of unexplored endophytes that reside within marine plants, this study assessed the anticancer potential of ethyl acetate endophytic fungal extracts (i.e. MBFT Tip 2.1, MBL 1.2, MBS 3.2, MKS 3 and MKS 3.1) derived from leaves, stem and fruits of marine plants that grow along Morib Beach, Malaysia. For identification of endophytic fungi, EF 4/ EF 3 and ITS 1/ ITS 4 PCR primer pairs were used to amplify the fungal 18S rDNA sequence and ITS region sequence, respectively. The resultant sequences were subjected to similarity search via the NCBI GenBank database. High-performance thin layer chromatography (HPTLC) hyphenated with bioassays was used to characterise the extracts in terms of their phytochemical profiles and bioactivity. Microchemical derivatisation was used to assess polyphenolic and phytosterol/ terpenoid content whereas biochemical derivatisation was used to establish antioxidant activities and α-amylase enzyme inhibition. The sulforhodamine B (SRB) assay was used to assess the anticancer effect of the extracts against HCT116 (a human colorectal cancer cell line). The present results indicated MBS 3.2 (Penicillium decumbens) as the most potent extract against HCT116 (IC50 = 0.16 μg/mL), approximately 3-times more potent than 5-flurouracil (IC50 = 0.46 μg/mL). Stepwise multiple regression method suggests that the anticancer effect of MBS 3.2 could be associated with high polyphenolic content and antioxidant potential. Nonlinear regression analysis confirmed that low to moderate α-amylase inhibition exhibits maximum anticancer activity. Current findings warrant further in-depth mechanistic studies.
    Matched MeSH terms: Chromatography, Thin Layer
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links