Displaying publications 1 - 20 of 48 in total

Abstract:
Sort:
  1. Daniel DS, Lee SM, Gan HM, Dykes GA, Rahman S
    J Infect Public Health, 2017 02 21;10(5):617-623.
    PMID: 28254461 DOI: 10.1016/j.jiph.2017.02.006
    Enterococcus faecalis ranks as one of the leading causes of nosocomial infections. A strong epidemiological link has been reported between E. faecalis inhabiting animals and environmental sources. This study investigates the genetic diversity, antibiotic resistance and virulence determinants in E. faecalis from three sources in Malaysia. A total of 250 E. faecalis isolates were obtained consisting of 120 isolates from farm animals, 100 isolates from water sources and 30 isolates from hospitalized patients. Pulse-field gel electrophoresis-typing yielded 63 pulsotypes, with high diversity observed in all sources (D=≥0.901). No pulsotype was common to all the three sources. Each patient room had its own unique PFGE pattern which persisted after six months. Minimum inhibitory concentrations of Vancomycin, Gentamicin, Penicillin, Tetracycline, Nitrofurantoin, Levofloxacin, Ciprofloxacin and Fosfomycin were evaluated. Resistance to Tetracycline was most prevalent in isolates from farm animals (62%) and water sources (49%). Water isolates (86%) had a higher prevalence of the asa1 gene, which encodes for aggregation substance, whereas clinical (78%) and farm animal isolates (87%) had a higher prevalence of the esp gene, encoding a surface exposed protein. This study generates knowledge on the genetic diversity of E. faecalis with antibiotic resistance and virulence characteristics from various sources in Malaysia.
    Matched MeSH terms: Enterococcus faecalis/drug effects; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/pathogenicity
  2. Soheili S, Ghafourian S, Sekawi Z, Neela V, Sadeghifard N, Ramli R, et al.
    ScientificWorldJournal, 2014;2014:623174.
    PMID: 25147855 DOI: 10.1155/2014/623174
    Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
    Matched MeSH terms: Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/pathogenicity
  3. Soheili S, Ghafourian S, Sekawi Z, Neela VK, Sadeghifard N, Taherikalani M, et al.
    Drug Des Devel Ther, 2015;9:2553-61.
    PMID: 26005332 DOI: 10.2147/DDDT.S77263
    The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
    Matched MeSH terms: Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/pathogenicity
  4. Thomas AR, Mani R, Reddy TV, Ravichandran A, Sivakumar M, Krishnakumar S
    J Contemp Dent Pract, 2019 Sep 01;20(9):1090-1094.
    PMID: 31797835
    AIM: The aim of the study was to assess the antibacterial efficiency of a combination of 1% alexidine (ALX) and 5.25% sodium hypochlorite (NaOCl) against E. faecalis biofilm using a confocal scanning electron microscopy.

    MATERIALS AND METHODS: An estimated 120 human root dentin disks were prepared, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to develop a 3-weeks-old biofilm. The dentin discs were exposed to group I-control group: 5.25% sodium hypochlorite (NaOCl) (n = 20); group II-1% ALX + 5.25% NaOCl (n = 40); group III-1% alexidine (ALX) (n = 40) (Sigma-Aldrich, Mumbai, India); group IV-negative control: saline (n = 20). After exposure, the dentin disks were stained with the fluorescent live/dead dye and evaluated with a confocal scanning electron microscope to calculate the proportion of dead cells. Statistical analysis was done using the Kruskal-Wallis and Mann-Whitney U test (p < 0.05).

    RESULTS: The maximum proportion of dead cells were seen in the groups treated with the combination of 1% ALX + 5.25% NaOCl (94.89%) and in the control group 5.25% NaOCl (93.14%). The proportion of dead cells presented in the 1% ALX group (51.79%) and negative control group saline (15.10%) were comparatively less.

    CONCLUSION: The antibacterial efficiency of a combination of 1% ALX and 5.25% NaOCl was more effective when compared with 1% ALX alone.

    CLINICAL SIGNIFICANCE: Alexidine at 1% could be used as an alternative endodontic irrigant to chlorhexidine, as alexidine does not form any toxic precipitates with sodium hypochlorite. The disinfection regimen comprising a combination of 1% ALX and 5.25% NaOCl is effective in eliminating E. faecalis biofilms.

    Matched MeSH terms: Enterococcus faecalis*
  5. Nami Y, Abdullah N, Haghshenas B, Radiah D, Rosli R, Yari Khosroushahi A
    J Appl Microbiol, 2014 Aug;117(2):498-508.
    PMID: 24775273 DOI: 10.1111/jam.12531
    This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract.
    Matched MeSH terms: Enterococcus faecalis/drug effects; Enterococcus faecalis/isolation & purification; Enterococcus faecalis/metabolism*
  6. Weng PL, Ramli R, Shamsudin MN, Cheah YK, Hamat RA
    Biomed Res Int, 2013;2013:938937.
    PMID: 23819125 DOI: 10.1155/2013/938937
    Little is known on the genetic relatedness and potential dissemination of particular enterococcal clones in Malaysia. We studied the antibiotic susceptibility profiles of Enterococcus faecium and Enterococcus faecalis and subjected them to pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). E. faecium and E. faecalis displayed 27 and 30 pulsotypes, respectively, and 10 representative E. faecium and E. faecalis isolates (five each) yielded few different sequence types (STs): ST17 (2 isolates), ST78, ST203, and ST601 for E. faecium, and ST6, ST16, ST28, ST179, and ST399 for E. faecalis. Resistance to tazobactam-piperacillin and ampicillin amongst E. faecium isolates was highly observed as compared to E. faecalis isolates. All of the isolates were sensitive to vancomycin and teicoplanin. The presence of epidemic and nosocomial strains of selected E. faecium STs: 17, 78, and 203 and E. faecalis ST6 as well as high rates of resistance to multiple antibiotics amongst E. faecium isolates is of a particular concern.
    Matched MeSH terms: Enterococcus faecalis/classification*; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  7. Daniel DS, Gan HM, Lee SM, Dykes GA, Rahman S
    Genome Announc, 2017 Jun 15;5(24).
    PMID: 28619812 DOI: 10.1128/genomeA.00553-17
    Enterococcus faecalis is known to cause a variety of nosocomial infections, including urinary tract infections. Antibiotic resistance and virulence properties in this species are of public concern. The draft genome sequences of six E. faecalis strains isolated from clinical and environmental sources in Malaysia are presented here.
    Matched MeSH terms: Enterococcus faecalis
  8. Weng PL, Ramli R, Hamat RA
    PMID: 31533204 DOI: 10.3390/ijerph16183439
    Enterococci are commonly found in humans, animals and environments. Their highly adaptive mechanisms are related to several virulent determinants and their ability to resist antibiotics. Data on the relationship between the esp gene, biofilm formation and antibiotic susceptibility profiles may differ between countries. This cross-sectional study was conducted to determine the proportion of esp gene and biofilm formation among Enterococcus faecalis and Enterococcus faecium clinical isolates. We also investigated the possible association between the esp gene with antibiotic susceptibility patterns and biofilm formation. The isolates were collected from clinical samples and identified using biochemical tests and 16SRNA. Antibiotic susceptibility patterns and a biofilm assay were conducted according to the established guidelines. Molecular detection by PCR was used to identify the esp gene using established primers. In total, 52 and 28 of E. faecalis and E. faecium were identified, respectively. E. faecium exhibited higher resistance rates compared to E. faecalis as follows: piperacillin/tazobactam (100% versus 1.9%), ampicillin (92.8% versus 1.9%), high-level gentamicin resistance (HLGR) (89.3% versus 25.0%) and penicillin (82.1% versus 7.7%). E. faecium produced more biofilms than E. faecalis (59.3% versus 49.0%). E. faecium acquired the esp gene more frequently than E. faecalis (78.6% versus 46.2%). Interestingly, the associations between ampicillin and tazobactam/piperacillin resistance with the esp gene were statistically significant (X2 = 4.581, p = 0.027; and X2 = 6.276, p = 0.012, respectively). Our results demonstrate that E. faecium exhibits high rates of antimicrobial resistance, esp gene acquisition and biofilm formation. These peculiar traits of E. faecium may have implications for the management of enterococcal infections in hospitals. Thus, concerted efforts by all parties in establishing appropriate treatment and effective control measures are warranted in future.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/physiology*
  9. Parolia A, Kumar H, Ramamurthy S, Madheswaran T, Davamani F, Pichika MR, et al.
    Molecules, 2021 Jan 30;26(3).
    PMID: 33573147 DOI: 10.3390/molecules26030715
    To determine the antibacterial effect of propolis nanoparticles (PNs) as an endodontic irrigant against Enterococcus faecalis biofilm inside the endodontic root canal system. Two-hundred-ten extracted human teeth were sectioned to obtain 6 mm of the middle third of the root. The root canal was enlarged to an internal diameter of 0.9 mm. The specimens were inoculated with E. faecalis for 21 days. Following this, specimens were randomly divided into seven groups, with 30 dentinal blocks in each group including: group I-saline; group II-propolis 100 µg/mL; group III-propolis 300 µg/mL; group IV-propolis nanoparticle 100 µg/mL; group V-propolis nanoparticle 300µg/mL; group VI-6% sodium hypochlorite; group VII-2% chlorhexidine. Dentin shavings were collected at 200 and 400 μm depths, and total numbers of CFUs were determined at the end of one, five, and ten minutes. The non-parametric Kruskal-Wallis and Mann-Whitney tests were used to compare the differences in reduction in CFUs between all groups, and probability values of p < 0.05 were set as the reference for statistically significant results. The antibacterial effect of PNs as an endodontic irrigant was also assessed against E. faecalis isolates from patients with failed root canal treatment. Scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM) were also performed after exposure to PNs. A Raman spectroscope, equipped with a Leica microscope and lenses with curve-fitting Raman software, was used for analysis. The molecular interactions between bioactive compounds of propolis (Pinocembrin, Kaempferol, and Quercetin) and the proteins Sortase A and β-galactosidase were also understood by computational molecular docking studies. PN300 was significantly more effective in reducing CFUs compared to all other groups (p < 0.05) except 6% NaOCl and 2% CHX (p > 0.05) at all time intervals and both depths. At five minutes, 6% NaOCl and 2% CHX were the most effective in reducing CFUs (p < 0.05). However, no significant difference was found between PN300, 6% NaOCl, and 2% CHX at 10 min (p > 0.05). SEM images also showed the maximum reduction in E. faecalis with PN300, 6% NaOCl, and 2% CHX at five and ten minutes. CLSM images showed the number of dead cells in dentin were highest with PN300 compared to PN100 and saline. There was a reduction in the 484 cm-1 band and an increase in the 870 cm-1 band in the PN300 group. The detailed observations of the docking poses of bioactive compounds and their interactions with key residues of the binding site in all the three docking protocols revealed that the interactions were consistent with reasonable docking and IFD docking scores. PN300 was equally as effective as 6% NaOCl and 2% CHX in reducing the E. faecalis biofilms.
    Matched MeSH terms: Enterococcus faecalis/drug effects*; Enterococcus faecalis/pathogenicity
  10. Getachew Y, Hassan L, Zakaria Z, Abdul Aziz S
    Appl Environ Microbiol, 2013 Aug;79(15):4528-33.
    PMID: 23666337 DOI: 10.1128/AEM.00650-13
    Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals.
    Matched MeSH terms: Enterococcus faecalis/drug effects; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  11. Ibrahim, N.Z., Abdullah, M.
    Ann Dent, 2008;15(1):20-26.
    MyJurnal
    This study aim to evaluate antimicrobial efficacy of sodium hypochlorite (NaOCl) and ozonated water against Enterococci faecalis biofilm. The bacterial biofilm was exposed to 2.62%, 1.31% NaOCl and 0.1 ppm ozonated water over a range of time periods. The presence of viable cells was determined by enumeration of colony forming units (CFU). All experiments were repeated four times (n=4). The effectiveness of the agents was compared using nonparametric Kruskal- Wallis test. The result revealed that 2.62% of NaOCl can completely kill E. faecalis biofilm in 15 minutes whereas 1.31 % NaOCl required a longer time to produce such effect. 0.1 ppm ozonated, however, did not exhibit any antimicrobial effect within the period of time tested. From this study, it can be concluded that 0.1 ppm ozonated water was not comparable with 2.62% and 1.31% NaOCl in antimicrobial efficacy against E. faecalis biofilm.
    Matched MeSH terms: Enterococcus faecalis
  12. Daood U, Parolia A, Elkezza A, Yiu CK, Abbott P, Matinlinna JP, et al.
    Dent Mater, 2019 09;35(9):1264-1278.
    PMID: 31201019 DOI: 10.1016/j.dental.2019.05.020
    OBJECTIVE: To analyze effect of NaOCl+2% quaternary ammonium silane (QAS)-containing novel irrigant against bacteria impregnated inside the root canal system, and to evaluate its antimicrobial and mechanical potential of dentine substrate.

    METHODS: Root canal was prepared using stainless steel K-files™ and ProTaper™ and subjected to manual and ultrasonic irrigation using 6% NaOCl+2% CHX, 6% NaOCl+2% QAS and saline as control. For confocal-microscopy, Raman spectroscopy and SEM analysis before and after treatment, Enterococcus faecalis cultured for 7 days. Raman spectroscopy analysis was done across cut section of gutta percha/sealer-dentine to detect resin infiltration. Indentation of mechanical properties was evaluated using a Berkovich indenter. The contact angle of irrigants and surface free energy were evaluated. Mineralization nodules were detected through Alazarin red after 14 days.

    RESULTS: Control biofilms showed dense green colonies. Majority of E. faecalis bacteria were present in biofilm fluoresced red in NaOCl+2% QAS group. There was reduction of 484cm-1 Raman band and its intensity reached lowest with NaOCl+2% QAS. There was an increase in 1350-1420cm-1 intensity in the NaOCl+2% CHX groups. Gradual decrease in 1639cm-1 and 1609cm-1 Raman signal ratios were seen in the resin-depth region of 17μm>, 14.1μm> and 13.2μm for NaOCl+2% QAS, NaOCl+2% CHX and control groups respectively. All obturated groups showed an intact sealer/dentine interface with a few notable differences. 0.771 and 83.5% creep indentation distance for NaOCl+2% QAS ultrasonic groups were observed. Highest proportion of polar component was significantly found in the NaOCl+2% QAS groups which was significantly higher as compared to other groups. Mineralized nodules were increased in NaOCl+2% QAS.

    SIGNIFICANCE: Favorable antimicrobial and endodontic profile of the NaOCl+2% QAS solution might suggest clinical use for it for more predictable reduction of intracanal bacteria.

    Matched MeSH terms: Enterococcus faecalis
  13. Daood U, Parolia A, Matinlinna J, Yiu C, Ahmed HMA, Fawzy A
    Dent Mater, 2020 12;36(12):e386-e402.
    PMID: 33010944 DOI: 10.1016/j.dental.2020.09.008
    OBJECTIVES: Evaluate a new modified quaternary ammonium silane irrigant solution for its antimicrobial, cytotoxic and mechanical properties of dentine substrate.

    METHODS: Root canal preparation was performed using stainless steel K-files™ and F4 size protaper with irrigation protocols of 6% NaOCl + 2% CHX; 3.5% QIS; 2% QIS and sterile saline. Biofilms were prepared using E. faecalis adjusted and allowed to grow for 3 days, treated with irrigants, and allowed to grow for 7 days. AFM was performed and surface free energy calculated. MC3T3 cells were infected with endo irrigant treated E. faecalis biofilms. Raman spectroscopy of biofilms were performed after bacterial re-growth on root dentine and exposed to different irrigation protocols and collagen fibers analysed collagen fibers using TEM. Antimicrobial potency against E. faecalis biofilms and cytoxicity against 3T3 NIH cells were also. Resin penetration and MitoTracker green were also evaluated for sealer penetration and mitochondrial viability. Data were analysed using One-way ANOVA, principal component analysis and post-hoc Fisher's least-significant difference.

    RESULTS: Elastic moduli were maintained amongst control (5.5 ± 0.9) and 3.5% QIS (4.4 ± 1.1) specimens with surface free energy higher in QIS specimens. MC3T3 cells showed reduced viability in 6%NaOCl+2%CHX specimens compared to QIS specimens. DNA/purine were expressed in increased intensities in control and 6% NaOCl + 2% CHX specimens with bands around 480-490 cm-1 reduced in QIS specimens. 3.5% QIS specimens showed intact collagen fibrillar network and predominantly dead bacterial cells in confocal microscopy. 3.5% QIS irrigant formed a thin crust-type surface layer with cytoplasmic extensions of 3T3NIH spread over root dentine. Experiments confirmed MitoTracker accumulation in 3.5% treated cells.

    SIGNIFICANCE: Novel QIS root canal irrigant achieved optimum antimicrobial protection inside the root canals facilitating a toxic effect against the Enterococcus faecalis biofilm. Root dentine substrates exhibited optimum mechanical properties and there was viability of fibroblastic mitochondria.

    Matched MeSH terms: Enterococcus faecalis
  14. Elghaieb H, Tedim AP, Abbassi MS, Novais C, Duarte B, Hassen A, et al.
    J Antimicrob Chemother, 2020 01 01;75(1):30-35.
    PMID: 31605129 DOI: 10.1093/jac/dkz419
    OBJECTIVES: Increasing numbers of linezolid-resistant Enterococcus carrying optrA are being reported across different niches worldwide. We aimed to characterize the first optrA-carrying Enterococcus faecalis obtained from food-producing animals and retail meat samples in Tunisia.

    METHODS: Seven optrA-carrying E. faecalis obtained from chicken faeces (n=3, August 2017) and retail chicken meat (n=4, August 2017) in Tunisia were analysed. Antimicrobial susceptibility was determined by disc diffusion, broth microdilution and Etest against 13 antibiotics, linezolid and tedizolid, respectively (EUCAST/CLSI). optrA stability (∼600 bacterial generations), transfer (filter mating) and location (S1-PFGE/hybridization) were characterized. WGS (Illumina-HiSeq) was done for four representatives that were analysed through in silico and genomic mapping tools.

    RESULTS: Four MDR clones carrying different virulence genes were identified in chicken faeces (ST476) and retail meat (the same ST476 clone plus ST21 and ST859) samples. MICs of linezolid and tedizolid were stably maintained at 8 and 1-2 mg/L, respectively. optrA was located in the same transferable chromosomal Tn6674-like element in ST476 and ST21 clones, similar to isolates from pigs in Malaysia and humans in China. ST859 carried a non-conjugative plasmid of ∼40 kb with an impB-fexA-optrA segment, similar to plasmids from pigs and humans in China.

    CONCLUSIONS: The same chromosomal and transferable Tn6674-like element was identified in different E. faecalis clones from humans and animals. The finding of retail meat contaminated with the same linezolid-resistant E. faecalis strain obtained from a food-producing animal highlights the potential role of the food chain in the worrisome dissemination of optrA that can be stably maintained without selective pressure over generations.

    Matched MeSH terms: Enterococcus faecalis/classification; Enterococcus faecalis/drug effects*; Enterococcus faecalis/genetics*
  15. Chai WL, Hamimah H, Cheng SC, Sallam AA, Abdullah M
    J Oral Sci, 2007 Jun;49(2):161-6.
    PMID: 17634730
    The purpose of this study was to investigate the antimicrobial efficacy of six groups of antibiotics and calcium hydroxide against Enterococcus faecalis biofilm in a membrane filter model. Two-day-old E. faecalis (ATCC 29212) biofilm was exposed to ampicillin, co-trimoxazole, erythr omycin, oxytetracycline, vancomycin, vancomycin followed by gentamicin, Ca(OH)(2), and phosphate-buffered saline (control). After 1 h of exposure, the antimicrobial activity was neutralized by washing each disc five times in PBS, and then the colony-forming units of the remaining viable bacteria on each disc were counted. The results revealed that only erythromycin, oxytetracycline and Ca(OH)2 showed 100% biofilm kill. An ANOVA with a Bonferroni post hoc test (P < 0.05) detected significant differences among the test agents, except in the ampicillin group versus the co-trimoxazole group. It is concluded that erythromycin, oxytetracycline and Ca(OH)2 are 100% effective in eliminating E. faecalis biofilm, whereas ampicillin, co-trimoxazole, vancomycin, and vancomycin followed by gentamicin are ineffective.
    Matched MeSH terms: Enterococcus faecalis/drug effects*
  16. Ong TH, Chitra E, Ramamurthy S, Siddalingam RP, Yuen KH, Ambu SP, et al.
    PLoS One, 2017;12(3):e0174888.
    PMID: 28362873 DOI: 10.1371/journal.pone.0174888
    Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
    Matched MeSH terms: Enterococcus faecalis/drug effects*
  17. Yean CY, Yin LS, Lalitha P, Ravichandran M
    BMC Microbiol, 2007;7:112.
    PMID: 18070365
    Enterococci have emerged as a significant cause of nosocomial infections in many parts of the world over the last decade. The most common enterococci strains present in clinical isolates are E. faecalis and E. faecium which have acquired resistant to either gentamicin or vancomycin. The conventional culture test takes 2-5 days to yield complete information of the organism and its antibiotic sensitivity pattern. Hence our present study was focused on developing a nanoplex PCR assay for the rapid detection of vancomycin and bifunctional aminoglycoside resistant enterococci (V-BiA-RE). This assay simultaneously detects 8 genes namely 16S rRNA of Enterococcus genus, ddl of E. faecalis and E. faecium, aacA-aphD that encodes high level gentamicin resistance (HLGR), multilevel vancomycin resistant genotypes such as vanA, vanB, vanC and vanD and one internal control gene.
    Matched MeSH terms: Enterococcus faecalis/classification; Enterococcus faecalis/drug effects; Enterococcus faecalis/genetics*; Enterococcus faecalis/isolation & purification
  18. Hassan Z, Mustafa S, Rahim RA, Isa NM
    In Vitro Cell. Dev. Biol. Anim., 2016 Mar;52(3):337-348.
    PMID: 26659392 DOI: 10.1007/s11626-015-9978-8
    Development of tumour that is resistant to chemotherapeutics and synthetic drugs, coupled with their life-threatening side effects and the adverse effects of surgery and hormone therapies, led to increased research on probiotics' anticancer potentials. The current study investigated the potential of live, heat-killed cells (HKC) and the cytoplasmic fractions (CF) of Enterococcus faecalis and Staphylococcus hominis as anti-breast cancer agents. MCF-7 cell line was treated with 25, 50, 100 and 200 μg/mL each of live, HKC and CF of the bacteria; and cytotoxicity was evaluated for 24, 48 and 72 h using MTT assay. The morphological features of the treated cells were examined by fluorescence microscopy. The stage of cell cycle arrest and apoptosis were quantified by flow cytometry. The bacterial effect on non-malignant breast epithelial cell line, MCF-10A, was assessed using MTT assay for 24, 48 and 72 h. All the three forms of the bacteria caused a significant decrease in MCF-7 (up to 33.29%) cell proliferation in concentration- and time-dependent manner. Morphological features of apoptosis like cell death, cell shrinkage and membrane blebbing were observed. Flow cytometry analyses suggested that about 34.60% of treated MCF-7 was undergoing apoptosis. A strong anti-proliferative activity was efficiently induced through sub-G1 accumulation (up to 83.17%) in treated MCF-7 and decreased number in the G0/G1 phase (74.39%). MCF-10A cells treated with both bacteria showed no significant difference with the untreated (>90% viability). These bacteria can be used as good alternative nutraceutical with promising therapeutic indexes for breast cancer because of their non-cytotoxic effects to normal cells.
    Matched MeSH terms: Enterococcus faecalis/isolation & purification; Enterococcus faecalis/metabolism*
  19. Bay HH, Lim CK, Kee TC, Ware I, Chan GF, Shahir S, et al.
    Environ Sci Pollut Res Int, 2014 Mar;21(5):3891-906.
    PMID: 24293297 DOI: 10.1007/s11356-013-2331-4
    This study focuses on the biodegradation of recalcitrant, coloured compounds resulting from auto-oxidation of Acid Orange 7 (AO7) in a sequential facultative anaerobic-aerobic treatment system. A novel mixed bacterial culture, BAC-ZS, consisting of Brevibacillus panacihumi strain ZB1, Lysinibacillus fusiformis strain ZB2, and Enterococcus faecalis strain ZL bacteria were isolated from environmental samples. The acclimatisation of the mixed culture was carried out in an AO7 decolourised solution. The acclimatised mixed culture showed 98 % decolourisation within 2 h of facultative anaerobic treatment using yeast extract and glucose as co-substrate. Subsequent aerobic post treatment caused auto-oxidation reaction forming dark coloured compounds that reduced the percentage decolourisation to 73 %. Interestingly, further agitations of the mixed culture in the solution over a period of 48 h significantly decolourise the coloured compounds and increased the decolourisation percentage to 90 %. Analyses of the degradation compounds using UV-visible spectrophotometer, Fourier transform infrared spectroscopy (FTIR) and high performance liquid chromatography (HPLC) showed complete degradation of recalcitrant AO7 by the novel BAC-ZS. Phytotoxicity tests using Cucumis sativus confirmed the dye solution after post aerobic treatment were less toxic compared to the parent dye. The quantitative real-time PCR revealed that E. faecalis strain ZL was the dominant strain in the acclimatised mix culture.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/metabolism*
  20. Ghafourian S, Raftari M, Sadeghifard N, Sekawi Z
    Curr Issues Mol Biol, 2014;16:9-14.
    PMID: 23652423
    The toxin-antitoxin (TA) systems are systems in which an unstable antitoxin inhibits a stable toxin. This review aims to introduce the TA system and its biological application in bacteria. For this purpose, first we introduce a new classification for the TA systems based on how the antitoxin can neutralize the toxin, we then describe the functions of TA systems and finally review the application of these systems in biotechnology.
    Matched MeSH terms: Enterococcus faecalis/genetics; Enterococcus faecalis/metabolism
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links