Displaying publications 1 - 20 of 112 in total

Abstract:
Sort:
  1. Adeel M, Zain M, Fahad S, Rizwan M, Ameen A, Yi H, et al.
    Environ Sci Pollut Res Int, 2018 Dec;25(36):36712-36723.
    PMID: 30377972 DOI: 10.1007/s11356-018-3588-4
    Since the inception of global industrialization, the growth of steroid estrogens becomes a matter of emerging serious concern for the rapid population. Steroidal estrogens are potent endocrine-upsetting chemicals that are excreted naturally by vertebrates (e.g., humans and fish) and can enter natural waters through the discharge of treated and raw sewage. Steroidal estrogens in plants may enter the food web and become a serious threat to human health. We evaluated the uptake and accumulation of ethinylestradiol (EE2) and 17β-estradiol (17β-E2) in lettuce plants (Lactuca sativa) grown under controlled environmental condition over 21 days growth period. An effective analytical method based on ultrasonic liquid extraction (ULE) for solid samples and solid phase extraction (SPE) for liquid samples with gas chromatography-mass spectrometry (GC/MS) has been developed to determine the steroid estrogens in lettuce plants. The extent of uptake and accumulation was observed in a dose-dependent manner and roots were major organs for estrogen deposition. Unlike the 17β-E2, EE2 was less accumulated and translocated from root to leaves. For 17β-E2, the distribution in lettuce was primarily to roots after the second week (13%), whereas in leaves it was (10%) over the entire study period. The distribution of EE2 at 2000 μg L-1 in roots and leaves was very low (3.07% and 0.54%) during the first week and then was highest (12% in roots and 8% in leaves) in last week. Bioaccumulation factor values of 17β-E2 and EE2 in roots were 0.33 and 0.29 at 50 μg L-1 concentration as maximum values were found at 50 μg L-1 rather than 500 and 2000 in all observed plant tissues. Similar trend was noticed in roots than leaves for bioconcentration factor as the highest bioconcentration values were observed at 50 μg L-1 concentration instead of 500 and 2000 μg L-1 spiked concentration. These findings mainly indicate the potential for uptake and bioaccumulation of estrogens in lettuce plants. Overall, the estrogen contents in lettuce were compared to the FAO/WHO recommended toxic level and were found to be higher than the toxic level which is of serious concern to the public health. This analytical procedure may aid in future studies on risks associated with uptake of endocrine-disrupting chemicals in lettuce plants.
    Matched MeSH terms: Estradiol/analysis; Estradiol/toxicity; Ethinyl Estradiol/analysis; Ethinyl Estradiol/toxicity; Estradiol Congeners/analysis*; Estradiol Congeners/toxicity
  2. Xiang X, Xie L, Lin J, Pare R, Huang G, Huang J, et al.
    Biogerontology, 2023 Oct;24(5):783-799.
    PMID: 36683095 DOI: 10.1007/s10522-023-10015-4
    Atherosclerosis threatens human health by developing cardiovascular diseases, the deadliest disease world widely. The major mechanism contributing to the formation of atherosclerosis is mainly due to vascular endothelial cell (VECs) senescence. We have shown that 17β-estradiol (17β-E2) may protect VECs from senescence by upregulating autophagy. However, little is known about how 17β-E2 activates the autophagy pathway to alleviate cellular senescence. Therefore, the aim of this study is to determine the role of estrogen receptor (ER) α and β in the effects of 17β-E2 on vascular autophagy and aging through in vitro and in vivo models. Hydrogen peroxide (H2O2) was used to establish Human Umbilical Vein Endothelial Cells (HUVECs) senescence. Autophagy activity was measured through immunofluorescence and immunohistochemistry staining of light chain 3 (LC3) expression. Inhibition of ER activity was established using shRNA gene silencing and ER antagonist. Compared with ER-β knockdown, we found that knockdown of ER-α resulted in a significant increase in the extent of HUVEC senescence and senescence-associated secretory phenotype (SASP) secretion. ER-α-specific shRNA was found to reduce 17β-E2-induced autophagy, promote HUVEC senescence, disrupt the morphology of HUVECs, and increase the expression of Rb dephosphorylation and SASP. These in vitro findings were found consistent with the in vivo results. In conclusion, our data suggest that 17β-E2 activates the activity of ER-α and then increases the formation of autophagosomes (LC3 high expression) and decreases the fusion of lysosomes with autophagic vesicles (P62 low expression), which in turn serves to decrease the secretion of SASP caused by H2O2 and consequently inhibit H2O2-induced senescence in HUVEC cells.
    Matched MeSH terms: Estradiol/pharmacology
  3. Ting YF, Praveena SM, Aris AZ, Ismail SNS, Rasdi I
    Ecotoxicology, 2017 Dec;26(10):1327-1335.
    PMID: 28975452 DOI: 10.1007/s10646-017-1857-5
    Steroid estrogens such as 17β-Estradiol (E2) and 17α-Ethynylestradiol (EE2) are highly potent estrogens that widely detected in environmental samples. Mathematical modelling such as concentration addition (CA) and estradiol equivalent concentration (EEQ) models are usually associated with measuring techniques to assess risk, predict the mixture response and evaluate the estrogenic activity of mixture. Wastewater has played a crucial role because wastewater treatment plant (WWTP) is the major sources of estrogenic activity in aquatic environment. The aims of this is to determine E2 and EE2 concentrations in six WWTPs effluent, to predict the estrogenic activity of the WWTPs effluent using CA and EEQ models where lastly the effectiveness of two models is evaluated. Results showed that all the six WWTPs effluent had relative high E2 concentration (35.1-85.2 ng/L) compared to EE2 (0.02-1.0 ng/L). The estrogenic activity predicted by CA model was similar among the six WWTPs (105.4 ng/L), due to the similarity of individual dose potency ratio calculated by respective WWTPs. The predicted total EEQ was ranged from 35.1 EEQ-ng/L to 85.3 EEQ-ng/L, explained by high E2 concentration in WWTPs effluent and E2 EEF value that standardized to 1.0 μg/L. The CA model is more effective than EEQ model in estrogenic activity prediction because EEQ model used less data and causes disassociation from the predicted behavior. Although both models predicted relative high estrogenic activity in WWTPs effluent, dilution effects in receiving river may lower the estrogenic response to aquatic inhabitants.
    Matched MeSH terms: Estradiol/analysis; Estradiol/toxicity*; Ethinyl Estradiol/analysis; Ethinyl Estradiol/toxicity*
  4. Onuma M, Suzuki M, Uchida E, Niiyama M, Ohtaishi N
    J Vet Med Sci, 2002 Apr;64(4):309-13.
    PMID: 12014574
    Fecal estradiol concentrations were measured in three captive unmated female sun bears (Helarctos malayanus) from August 1998 to July 1999 in Sarawak, Malaysia and vaginal smears from one of the females was observed in August 1998 and March 1999. A single peak in fecal estradiol concentration was obvious for each bear in August or September 1998, and there was a much higher percentage of superficial vaginal anuclear cells in August 1998 than in March 1999. These results suggest that sun bears in Sarawak are likely to be a seasonal breeder associated with a peak of estrogen production in August or September.
    Matched MeSH terms: Estradiol/blood; Estradiol/metabolism*
  5. Yien Fang T, Praveena SM, Aris AZ, Syed Ismail SN, Rasdi I
    Chemosphere, 2019 Jan;215:153-162.
    PMID: 30316157 DOI: 10.1016/j.chemosphere.2018.10.032
    Steroid estrogens, such as 17β-estradiol (E2) and 17α-ethynylestradiol (EE2) are potent and were categorized as "Watch List" in Directive 2013/39/EU because of their potential risks to aquatic environment. Commercialized enzyme-linked immunosorbent assay (ELISA) kits have been used to quantify steroid estrogens in wastewater samples due to their simplicity, rapid, cost-effectiveness, and validated assays. Hence, this study aims to determine the occurrence and removal of steroid hormones in Malaysian wastewater treatment plants (WWTPs) by ELISA, to identify the association of removal efficiency (E2 and EE2) with respect to WWTPs operating conditions, and to assess the potential risks of steroid estrogens to aquatic environment and human. Results showed E2 concentration ranged from 88.2 ± 7.0 ng/L to 93.9 ± 6.9 ng/L in influent and 35.1 ± 17.3 ng/L to 85.2 ± 7.6 ng/L in effluent, with removal of 6.4%-63.0%. The EE2 concentration ranged from 0.2 ± 0.2 ng/L to 4.9 ± 6.3 ng/L in influent and 0.02 ± 0.03 ng/L to 1.0 ± 0.8 ng/L in effluent, with removal of 28.3-99.3%. There is a correlation between EE2 removal with total suspended solid (TSS) and oxidation reduction potential (ORP), and was statistically significant. Despite the calculated estrogenic activity for E2 and EE2 was relatively high, dilution effects could lower estrogenic response to aquatic environment. Besides, these six selected WWTPs have cumulative RQ values below the allowable limit, except WWTP 1. Relatively high precipitation (129-218 mm) could further dilute estrogens concentration in the receiving river. These outputs can be used as quantitative information for evaluating the occurrence and removal of steroid estrogens in Malaysian WWTPs.
    Matched MeSH terms: Estradiol; Ethinyl Estradiol; Estradiol Congeners
  6. Ganaraja B, Pavithran P, Ghosh S
    Indian J Med Sci, 2004 Apr;58(4):150-4.
    PMID: 15122050
    BACKGROUND: Plasma ceruloplasmin, a copper containing protein, belongs to a class called acute phase proteins. Reduced level of ceruloplasmin was associated with Wilson's disease and Menke's kinky hair disease in man, primarily affecting copper metabolism. Stress was known to increase Ceruloplasmin. Several stress associated changes were commonly observed in women at menopause and also those who underwent overiectomy. Present experiment investigated the effect of estrogen on ceruloplasmin level in acute stress.

    AIMS: To assess the estradiol induced changes in plasma ceruloplasmin concentration on exposure of the rats to acute stress.

    SETTINGS AND DESIGN: Acute stress was induced by forcing the rats to swim till exhaustion. The rats were overiectomised bilaterally to remove the primary source of sex hormones. And hormone replacement was done later.

    MATERIAL AND METHODS: Wistar albino female rats were used. Acute stress was induced before overiectomy, following recovery from surgery, and again after Estradiol Valerate injection (for 10 days) in same group of rats. The plasma ceruloplasmin was estimated immediately after stress during each stage--that is preoperative control, stressed control, after overiectomy and then following treatment with Estradiol Valerate.

    STATISTICAL ANALYSIS USED: Paired sample T test was applied to analyze the findings.

    RESULTS: We found lowest ceruloplasmin level after stress in overiectomised animals, while on substitution of estradiol the trend appeared to be reversed.

    CONCLUSION: The result suggested a direct effect of estrogen on hepatic ceruloplasmin production/release and this could account for some of the beneficial effects of hormone replacement therapy.

    Matched MeSH terms: Estradiol/analogs & derivatives*; Estradiol/pharmacology*
  7. Duong CN, Ra JS, Cho J, Kim SD, Choi HK, Park JH, et al.
    Chemosphere, 2010 Jan;78(3):286-93.
    PMID: 19931116 DOI: 10.1016/j.chemosphere.2009.10.048
    The effects of treatment processes on estrogenicity were evaluated by examining estradiol equivalent (EEQ) concentrations in influents and effluents of sewage treatment plants (STPs) located along Yeongsan and Seomjin rivers in Korea. The occurrence and distribution of estrogenic chemicals were also estimated for surface water in Korea and compared with seven other Asian countries including Laos, Cambodia, Vietnam, China, Indonesia, Thailand and Malaysia. Target compounds were nonylphenol (NP), octylphenol (OP), bisphenol A (BPA), estrone (E1), 17beta-estradiol (E2), 17alpha-ethynylestradiol (EE2) and genistein (Gen). Water samples were pretreated and analyzed by liquid-liquid extraction (LLE) and gas chromatography/mass spectrometry (GC/MS). The results showed that the treatment processes of Korean STPs were sufficient to reduce the estrogenic activity of municipal wastewater. The concentrations of phenolic xenoestrogens (i.e., NP, OP and BPA) in samples of Yeongsan and Seomjin rivers were smaller than those reported by previous studies in Korea. In most samples taken from the seven Asian countries, the presence of E2 and EE2 was a major contributor toward estrogenic activity. The EEQ concentrations in surface water samples of the seven Asian countries were at a higher level in comparison to that reported in European countries, America and Japan. However, further studies with more sampling frequencies and sampling areas should be carried out for better evaluation of the occurrence and distribution of estrogenic compounds in these Asian countries.
    Matched MeSH terms: Estradiol/analysis; Estradiol/chemistry; Ethinyl Estradiol/analysis; Ethinyl Estradiol/chemistry
  8. Nurulnadia MY, Koyama J, Uno S, Amano H
    Chemosphere, 2016 Feb;144:185-92.
    PMID: 26363319 DOI: 10.1016/j.chemosphere.2015.08.059
    We evaluated the potential for biomagnification of endocrine disrupting chemicals (EDCs) such as nonylphenol (NP), octylphenol (OP), bisphenol A (BP), and natural estrogens such as estrone (E1) and 17β-estradiol (E2) in a benthic fish, Pleuronectes yokohamae. The assimilation efficiencies (AE) of most EDCs ranged from 88 to 96% suggesting that they were efficiently incorporated and assimilated into P. yokohamae, except for NP (50%). However, the biomagnification factor (BMF) values were <1.0 suggesting that the compounds were not biomagnifying. Additionally, three of the target EDCs were not detected (BP, E1 and E2). Glucuronidation activity towards BP (11.44 ± 2.5 nmol/mg protein/min) and E2 (12.41 ± 3.2 nmol/mg protein/min) was high in the intestine suggesting that EDCs were glucuronidated prior to excretion into bile. Thus, we conclude that biomagnification of dietary EDCs is reduced in P. yokohamae because of effective glucuronidation.
    Matched MeSH terms: Estradiol; Estradiol Congeners
  9. Bhattacharya K, Sengupta P, Dutta S, Syamal AK
    Mol Cell Biochem, 2023 Feb;478(2):285-289.
    PMID: 35788949 DOI: 10.1007/s11010-022-04505-1
    Estrogens and progesterone, in unison and/or separately, synchronize the distinct events of blastocyst development, uterine priming and receptivity induction for implantation. In contrast to high implantation failure rates, the mechanistic concepts regarding the uterine receptivity for implantation still remain elusive. The present study aims to define the minimum estradiol (E2) dose to induce uterine receptivity for successful implantation in post-coitus bilaterally ovariectomized (BLO) progesterone-primed uterus of mice. Post-coital sperm-positive adult female mice were divided into two groups. In both the groups, delayed implantation was induced by BLO on post-coitus Day 4 (D4). Group 1 received 2 mg of progesterone (P4) from D5 until sacrifice, and E2 injection of 3.0, 10.0, 25.0 and 50.0 ng on D7. On D8, all mice of this group were sacrificed except the mice that received second dose of 25.0 ng of E2 on D8 and were sacrificed on D9. Group 2 followed the same doses, but were given simultaneously on D4, and sacrificed on D5. The mice that received second doses of 25.0 ng E2 were sacrificed on D6. The minimum dose of E2 required to induce uterine receptivity for implantation is a single dose of 50.0 ng E2. The uterus remained refractory following short receptive period at E2 doses lower than 50.0 ng, which is just sufficient to establish desired uterine receptivity. However, repeated administration of sub-threshold doses of 25.0 ng of E2 could also not effectively sustain uterine receptivity towards successful implantation.
    Matched MeSH terms: Estradiol/pharmacology
  10. Xiang X, Wang Y, Huang G, Huang J, Gao M, Sun M, et al.
    J Steroid Biochem Mol Biol, 2023 Mar;227:106244.
    PMID: 36584773 DOI: 10.1016/j.jsbmb.2022.106244
    OBJECTIVE: 17β-estradiol (17β-E2) has been implicated in activating autophagy by upregulating SIRT3 (Sirtuin 3) expression, thereby inhibiting the senescence of vascular endothelial cells. Herein, we further examined the molecular mechanisms that regulate SIRT3 expression in 17β-E2-induced autophagy.

    METHODS: Reverse-transcription-polymerase chain reaction was employed to measure the expression of plasmacytoma variant translocation 1 (PVT1), microRNAs (miRNAs), and SIRT3, and the dual-luciferase assay was used to determine their interaction. Electron microscopy observes autophagosomes, green fluorescent protein-microtubule-associated protein 1 light chain 3 (GFP-LC3) staining, and immunoblot analysis with antibodies against LC3,beclin-1, and P62 were conducted to measure autophagy. Cellular senescence was determined using immunoblot analysis with anti-phosphorylated retinoblastoma and senescence-associated β-galactosidase staining.

    RESULTS: Women with higher estrogen levels (during the 10-13th day of the menstrual cycle or premenopausal) exhibit markedly higher serum levels of PVT1 than women with lower estrogen levels (during the menstrual period or postmenopausal). The dual-luciferase assay showed that PVT1 acts as a sponge for miR-31, and miR-31 binds to its target gene, SIRT3. The 17β-E2 treatment increased the expression of PVT1 and SIRT3 and downregulated miR-31 expression in human umbilical vein endothelial cells (HUVECs). Consistently, PVT1 overexpression suppresses miR-31 expression, promotes 17β-E2-induced autophagy, and inhibits H2O2-induced senescence. miR-31 inhibitor increases SIRT3 expression and leads to activation of 17β-E2-induced autophagy and suppression of H2O2-induced senescence.

    CONCLUSION: Our findings demonstrated that 17β-E2 upregulates PVT1 gene expression and PVT1 functions as a sponge to inhibit miR-31, resulting in the upregulation of SIRT3 expression and activation of autophagy and subsequent inhibition of H2O2-induced senescence in HUVECs.

    Matched MeSH terms: Estradiol/pharmacology
  11. Sukatis FF, Looi LJ, Lim HN, Abdul Rahman MB, Mohd Zaki MR, Aris AZ
    Environ Pollut, 2024 Jan 15;341:122980.
    PMID: 37992953 DOI: 10.1016/j.envpol.2023.122980
    The presence of emerging water pollutants such as endocrine-disrupting compounds (EDCs), including 17-ethynylestradiol (EE2), bisphenol A (BPA), and perfluorooctanoic acid (PFOA), in contaminated water sources poses significant environmental and health challenges. This study aims to address this issue by investigating the efficiency of novel calcium-based metal-organic frameworks, known as mixed-linker calcium-based metal-organic frameworks (Ca-MIX), in adsorbing these endocrine-disrupting compounds. This study analyzed the influence of influent concentration, bed height, and flow rate on pollutant removal, with bed height emerging as a crucial factor. From the breakthrough curves, it was determined that the column maximum adsorption capacities followed the order of 17-ethynylestradiol (101.52 μg/g; 40%) > bisphenol A (99.07 μg/g; 39%) > perfluorooctanoic acid (81.28 μg/g; 32%). Three models were used to predict the adsorption process, with the Yan model outperforming the other models. This suggests the potential of mixed-linker calcium-based metal-organic frameworks for removing endocrine-disrupting compounds from water, using the Yan model as an effective predictor. Overall, this study provides valuable insights for the development of effective water treatment methods using mixed-linker calcium-based metal-organic frameworks to remove endocrine-disrupting compounds from contaminated water sources.
    Matched MeSH terms: Ethinyl Estradiol/analysis
  12. Cameron IG
    Matched MeSH terms: Ethinyl Estradiol
  13. Praveena SM, Lui TS, Hamin N, Razak SQ, Aris AZ
    Environ Monit Assess, 2016 Jul;188(7):442.
    PMID: 27353134 DOI: 10.1007/s10661-016-5438-5
    The occurrence and estrogenic activities of steroid estrogens, such as the natural estrone (E1), 17β estradiol (E2), and estriol (E3), as well as the synthetic 17α-ethynylestradiol (EE2), were investigated in eight sampling points along the Langat River (Malaysia). Surface water samples were collected at 0.5 m and surface sediment 0-5 cm from the river surface. Instrument analysis of steroid estrogens was determined by UPLC-ESI-MS with an ultra-performance liquid chromatograph (Perkin Elmer FX15) coupled to a Q Trap function mass spectrophotometer (model 3200: AB Sciex). Steroid estrogen concentrations were higher in the Langat River sediments than those in its surface water. In surface water, E1 was not detected in any sampling point, E2 was only detected in two midstream sampling points (range 0-0.004 ng/L), E3 in three sampling points (range 0-0.002 ng/L), and EE2 in four sampling points (range 0-0.02 ng/L). E1 and E2 were detected in sediments from all sampling points, E3 in five sampling points, while EE2 only in one midstream sample (3.29E-4 ng/g). Sewage treatment plants, farming waste, and agricultural activities particularly present midstream and downstream were identified as potential sources of estrogens. Estrogenic activity expressed as estradiol equivalents (EEQs) was below 1 ng/L in all samples for both surface water and sediment, indicating therefore a low potential estrogenic risk to the aquatic environment. Although the health risks are still uncertain for drinking water consumers exposed to low levels of steroid estrogen concentrations, Langat River water is unacceptable for direct drinking purposes without treatment. Further studies of endocrine disruptors in Malaysian waters are highly recommended.
    Matched MeSH terms: Estradiol/analysis; Ethinyl Estradiol/analysis
  14. Nwe HH, Abdul Wadood H, Abdullah RB, Arshad H
    Med J Malaysia, 1990 Sep;45(3):244-50.
    PMID: 2152087
    This paper presents a study of cycles with spontaneous luteinizing hormone (LH) surge in superovulatory Malay women during in vitro fertilization and gamete intrafallopian transfer programmes. Sixteen Malay women underwent ovarian stimulation for ovum pick up at the National Population and Family Development Board, Malaysia. Two cycles showed spontaneous LH surge, and comparisons were made between these two cycles and the cycles without surge. Further observations were made in their characteristics and differences in these two cycles as well as the relationship between progesterone and LH at the time and before the surge.
    Matched MeSH terms: Estradiol/blood
  15. Kwan TK, Thambyrajah V
    Med J Malaysia, 1978 Mar;32(3):236-41.
    PMID: 683049
    Matched MeSH terms: Estradiol/metabolism*
  16. Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y
    Biotechnol Appl Biochem, 2021 Aug;68(4):881-888.
    PMID: 33245588 DOI: 10.1002/bab.2008
    17β-Estradiol-E2 (17β-E2) is a steroid hormone that plays a major role in the reproductive endocrine system and is involved in various processes, such as pregnancy, fertility, and menopause. In this study, the performance of an enzyme-linked immunosorbent assay (ELISA) for 17β-E2 quantification was enhanced by using a gold nanoparticle (GNP)-conjugated aptamer. An anti-17β-E2-aptamer-GNP antibody was immobilized on an amine-modified ELISA surface. Then, 17β-E2 was allowed to interact with and be sandwiched by antibodies. Aptamer-GNP conjugation was confirmed by colorimetric assays via the naked eye and UV-visible light spectroscopy. The detection limit based on a signal-to-noise ratio (S/N) of 3 was estimated to be 1.5 nM (400 pg/mL), and the linear range was 1.5-50 nM. Control experiments (without 17β-E2/with a complementary aptamer sequence/with a nonimmune antibody) confirmed the specific detection of 17β-E2. Moreover, 17β-E2 spiking of human serum did not interrupt the interaction between 17β-E2 and its antibody and aptamer. Thus, the developed ELISA can be used as an alternate assay for quantification of 17β-E2 and assessment of endocrine-related gynecological problems.
    Matched MeSH terms: Estradiol/analysis*
  17. Shah SA, Sultan S, Hassan NB, Muhammad FK, Faridz MA, Hussain FB, et al.
    Steroids, 2013 Dec 20;78(14):1312-24.
    PMID: 24135562 DOI: 10.1016/j.steroids.2013.10.001
    Structural modification of steroids through whole-cell biocatalysis is an invaluable procedure for the production of active pharmaceutical ingredients (APIs) and key intermediates. Modifications could be carried out with regio- and stereospecificity at positions hardly available for chemical agents. Much attention has been focused recently on the biotransformation of 17α-ethynyl substituted steroidal drugs using fungi, bacteria and plant cell cultures in order to obtained novel biologically active compounds with diverse structure features. Present article includes studies on biotransformation on 17α-ethynyl substituted steroidal drugs using microorganisms and plant cell cultures. Various experimental and structural elucidation methods used in biotransformational processes are also highlighted.
    Matched MeSH terms: Ethinyl Estradiol/isolation & purification; Ethinyl Estradiol/metabolism*; Ethinyl Estradiol/chemistry
  18. Kamis AB, Ahmad RA, Badrul-Munir MZ
    Parasitol Res, 1994;80(1):74-7.
    PMID: 8153130
    Gonadectomized male laboratory rats were given 0.06 mg/kg estradiol benzoate daily for 14 days before being inoculated with 50 third-stage larvae of Parastrongylus malaysiensis. Hormone treatment was continued until the rats were killed. The numbers of larvae in the brain and of adult worms in the pulmonary area of the rats were determined every 7 days after the inoculation. It was found that the rats treated daily with estradiol benzoate had significantly and consistently higher numbers of larvae and adult worms as compared with the controls. The number of total leukocytes increased significantly after the rats were infected. The results show that estradiol-treated rats become susceptible to P. malaysiensis infection, which may indicate that the immunosuppressive effects of testosterone observed in earlier studies may partly be caused by estradiol that was peripherally aromatized from testosterone.
    Matched MeSH terms: Estradiol/analogs & derivatives*; Estradiol/pharmacology; Estradiol/physiology
  19. Bariah Mohd Ali, Goh, E.H.
    MyJurnal
    The objective of this study was to determine the efficiency of UV blocking monomers in contact lenses in providing eye protection from UV radiation. The spectral transmission of 8 contact lenses (7 soft contact lenses: Precision UV, Acuvue 2, Surevue, Omega, Encore UV, Durasoft 3 and Lunelle UV and 1 rigid gas permeable contact lens: Boston 7) was evaluated by using a dual beam spectrophotometer. Durasoft 3, a non UV absorbent contact lens was used as the control. The results showed that Precision UV contact lens absorbed UV light up to wavelength of 380 nm, whereas Acuvue 2 and Surevue absorbed up to 360 nm only. Omega, Encore UV and Lunelle UV lenses absorbed UV light up to 335 nm with spectral transmission of Lunelle UV being the highest among all soft contact lenses tested, which was 17%. Boston 7 could absorb UV light up to 385 nm, but the amount of UV light transmitted was higher than soft lenses, which was 30%. Durasoft 3 only blocked UV light at 200-245 nm. Precision UV lens had better UV blocker characteristics than the other contact lenses tested. UV blocking soft contact lenses could be an alternative for spectacles in protecting internal ocular structures from UV radiation.
    Matched MeSH terms: Estradiol
  20. Alhares HS, Ali QA, Shaban MAA, M-Ridha MJ, Bohan HR, Mohammed SJ, et al.
    Environ Monit Assess, 2023 Aug 24;195(9):1078.
    PMID: 37615739 DOI: 10.1007/s10661-023-11689-6
    The 17 α-ethinylestradiol (EE2) adsorption from aqueous solution was examined using a novel adsorbent made from rice husk powder coated with CuO nanoparticles (CRH). Advanced analyses of FTIR, XRD, SEM, and EDSwere used to identify the classification parameters of a CRH-like surface morphology, configuration, and functional groups. The rice husk was coated with CuO nanoparticles, allowing it to create large surface area materials with significantly improved textural qualities with regard to functional use and adsorption performance, according to a detailed characterization of the synthesized materials. The adsorption process was applied successfully with elimination effectiveness of 100% which can be kept up to 61.3%. The parameters of adsorption were affecting the adsorption process significantly. Thermodynamic data stated that the process of adsorption was endothermic, spontaneous, chemisorption and the molecules of EE2 show affinity with the CRH. It was discovered that the adsorption process controlled by a pseudo-second-order kinetic model demonstrates that the chemisorption process was controlling EE2 removal. The Sips model is regarded as optimal for representing this practice, exhibiting a significantly high determination coefficient of 0.948. This coefficient implies that the adsorption mechanism indicates the occurrence of both heterogeneous and homogeneous adsorption. According to the findings, biomass can serve as a cheap, operative sorbent to remove estrogen from liquified solutions.
    Matched MeSH terms: Ethinyl Estradiol
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links