METHODS AND RESULTS: A multidisciplinary panel of fifty-two international experts comprising Hepatologists, Endocrinologists, Diabetologists, Cardiologists and Family Physicians from six continents (Asia, Europe, North America, South America, Africa and Oceania) participated in a formal Delphi survey and developed consensus statements on the association between MAFLD and the risk of CVD. Statements were developed on different aspects of CVD risk, ranging from epidemiology to mechanisms, screening, and management.
CONCULSIONS: The expert panel identified important clinical associations between MAFLD and the risk of CVD that could serve to increase awareness of the adverse metabolic and cardiovascular outcomes of MAFLD. Finally, the expert panel also suggests potential areas for future research.
METHODS: This was a retrospective cohort study involving two hepatobiliary centres from January 1, 2012, to June 30, 2018. Medical records were analysed for sociodemographic, clinical characteristics, laboratory testing, and HCC treatment information. Survival outcomes were examined using the Kaplan-Meier and log-rank test. Prognostic factors were determined using multivariate Cox regression.
RESULTS: A total of 212 patients were included in the study. The median survival time was 22 months. The 1-, 3-, and 5-year survival rates were 64.2%, 34.2%, and 18.0%, respectively. Palliative treatment (adjusted hazard ratio [AHR] = 2.82, 95% confidence interval [CI] 1.75-4.52), tumour size ≥ 5 cm (AHR = 2.02, 95%CI: 1.45-2.82), traditional medication (AHR = 1.94, 95%CI: 1.27-2.98), raised alkaline phosphatase (AHR = 1.74, 95%CI: 1.25-2.42), and metformin (AHR = 1.44, 95%CI: 1.03-2.00) were significantly associated with poor prognosis for HCC survival. Antiviral hepatitis treatment (AHR = 0.54, 95% CI: 0.34-0.87), nonalcoholic fatty liver disease (NAFLD) (AHR = 0.50, 95% CI: 0.30-0.84), and family history of malignancies (AHR = 0.50, 95%CI: 0.26-0.96) were identified as good prognostic factors for HCC survival.
DISCUSSION: Traditional medication, metformin treatment, advanced stage and raised alkaline phosphatase were the poor prognostic factors, while antiviral hepatitis treatment, NAFLD, and family history of malignancies were the good prognostic factors for our HCC cases comorbid with T2D.
METHODS: Adult patients with chronic liver disease who had a liver biopsy and examination with both the M and XL probes were included. Previously defined optimal cut-offs for CAP using the M probe were used for the diagnosis of steatosis grades ≥S1, ≥S2, and S3 (248, 268, and 280 dB/m, respectively).
RESULTS: Data for 180 patients were analyzed (mean age 53.7 ± 10.8 years; central obesity 84.5%; non-alcoholic fatty liver disease 86.7%). The distribution of steatosis grades was S0, 9.4%; S1, 28.3%; S2, 43.9%, and S3, 18.3%. The sensitivity, specificity, positive predictive value, and negative predictive value of CAP using the M/XL probe for the diagnosis of steatosis grade ≥S1 was 93.9%/93.3%, 58.8%/58.8%, 95.6%/95.6%, and 50.0%/47.6%, respectively. These values were 94.6%/94.6%, 41.2%/44.1%, 72.6%/73.6%, and 82.4%/83.3%, respectively, for ≥S2, and 87.9%/87.9%, 27.2%/27.9%, 21.3%/21.5%, and 90.9%/91.1%, respectively, for S3.
CONCLUSION: The same cut-off values for CAP may be used for the M and XL probes for the diagnosis of hepatic steatosis grade.
METHODS: A review of the literature identified studies containing histology verified CAP data (M probe, vibration controlled transient elastography with FibroScan®) for grading of steatosis (S0-S3). Receiver operating characteristic analysis after correcting for center effects was used as well as mixed models to test the impact of covariates on CAP. The primary outcome was establishing CAP cut-offs for distinguishing steatosis grades.
RESULTS: Data from 19/21 eligible papers were provided, comprising 3830/3968 (97%) of patients. Considering data overlap and exclusion criteria, 2735 patients were included in the final analysis (37% hepatitis B, 36% hepatitis C, 20% NAFLD/NASH, 7% other). Steatosis distribution was 51%/27%/16%/6% for S0/S1/S2/S3. CAP values in dB/m (95% CI) were influenced by several covariates with an estimated shift of 10 (4.5-17) for NAFLD/NASH patients, 10 (3.5-16) for diabetics and 4.4 (3.8-5.0) per BMI unit. Areas under the curves were 0.823 (0.809-0.837) and 0.865 (0.850-0.880) respectively. Optimal cut-offs were 248 (237-261) and 268 (257-284) for those above S0 and S1 respectively.
CONCLUSIONS: CAP provides a standardized non-invasive measure of hepatic steatosis. Prevalence, etiology, diabetes, and BMI deserve consideration when interpreting CAP. Longitudinal data are needed to demonstrate how CAP relates to clinical outcomes.
LAY SUMMARY: There is an increase in fatty liver for patients with chronic liver disease, linked to the epidemic of the obesity. Invasive liver biopsies are considered the best means of diagnosing fatty liver. The ultrasound based controlled attenuation parameter (CAP) can be used instead, but factors such as the underlying disease, BMI and diabetes must be taken into account. Registration: Prospero CRD42015027238.