AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.
METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control. Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.
RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).
CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.
METHODS: Primary SFb isolated from knee synovium of OA obese (OA-ob:SFb), OA-pre-obese (OA-Pob:SFb), non-OA arthroscopic (scope:SFb), and non-OA arthroscopic with cartilage damage (scope-CD:SFb) were exposed to OA-conditioned media (OACM), derived from OA obese (OA-ob:CM), OA-pre-obese (OA-Pob:CM), and mechanical stretch at either 0 %, 6 % or 10 % for 24 h. Differences in the mRNA levels of genes involved in extracellular matrix production, inflammation and secretory activity were measured.
RESULTS: Despite the significant BMI differences between the OA-ob and OA-Pob groups, OA-Pob has more patients with underlying dyslipidaemia, and low-grade synovitis with higher levels of secreted proteins, CXCL8, COL4A1, CCL4, SPARC and FGF2 in OA-Pob:CM. All primary SFb exhibited anti-proliferative activity with both OA-CM. Mechanical stretch stimulated lubricin production in scope:SFb, higher TGFβ1 and COL1A1 expressions in scope-CD:SFb. OA-Pob:CM stimulated greater detrimental effects than the OA-ob:CM, with higher pro-inflammatory cytokines, IL1β, IL6, COX2 and proteases such as aggrecanases, ADAMTS4 and ADAMTS5, and lower ECM matrix, COL1A1 expressions in all SFb. OA-ob:SFb were unresponsive but expressed higher pro-inflammatory cytokines under OA-Pob:CM treatment.
CONCLUSION: Both mechanical and inflammatory stressors regulate SFb molecular functions with heterogeneity in responses that are dependent on their pathological tissue of origins. While mechanical stretch promotes a favorable effect with enhanced lubricin production in scope:SFb and TGFβ1 and COL1A1 in scope-CD:SFb, the presence of excessively high OA-associated inflammatory mediators in OA-Pob:CM, predominantly SPARC, CXCL8 and FGF2 drive all SFb regardless of pathology, towards greater pro-inflammatory activities.
MATERIALS & METHODS: Podoplanin expression was evaluated immunohistochemically in 153 breast cancers. Tumours with ≥ 10% distinct cytoplasmic podoplanin staining in CAFs were considered as positive.
RESULTS: In 65.3% of analysed tumours, podoplanin expression was found positive in CAFs. According to our results, podoplanin positive CAFs correlated significantly with tumour size (p= 0.012), tumour grade (p= 0.032) and cerbB2 score (p= 0.032).
DISCUSSION: Our results suggest that podoplanin expression by CAFs could predict poor patient outcome in breast carcinoma.