Displaying publications 1 - 20 of 33 in total

Abstract:
Sort:
  1. Ahmad Zawawi SS, Mohd Azram NAS, Sulong S, Zakaria AD, Lee YY, Che Jalil NA, et al.
    Asian Pac J Cancer Prev, 2023 Sep 01;24(9):3099-3107.
    PMID: 37774061 DOI: 10.31557/APJCP.2023.24.9.3099
    BACKGROUND: Accumulation of cancer-associated fibroblasts (CAFs) in the tumor stroma is linked to poor prognosis in colorectal cancer (CRC). CAF-cancer cell interplay, facilitated by secretomes including transforming growth factor-beta 1 (TGF-β1), supports fibroblast activation, drives colorectal carcinogenesis, and contributes to CRC aggressive phenotypes. Although widely used, traditional CAF biomarkers are found to have heterogeneous and non-specific expression. Amine oxidase copper containing 3 (AOC3) and leucine-rich repeat-containing 17 (LRRC17) have been reported to be emerging markers of myofibroblasts.

    AIM: Our objective was to investigate the potential of AOC3 and LRRC17 as biomarkers for fibroblast activation thus predicting their roles in CRC progression.

    METHODS: Immunofluorescence (IF) staining of AOC3 and LRRC17 was performed on myofibroblast line (CCD-112CoN), primary fibroblasts from colorectal tumor (CAFs), and adjacent normal tissue (normal fibroblasts-NFs). SW620 (epithelial CRC cell line) was used as a control.  Conventional CAF biomarker (alpha-smooth muscle actin - α-SMA) was included in the IF analysis. Fluorescence intensity was compared between groups using ImageJ software. Proliferation and contractility of treated cells were assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) and collagen gel contraction assays, respectively. Fibroblast contraction under TGF-β1 treatment was compared to those treated with complete medium (addition of 10% serum) and serum free (SF) medium.

    RESULTS: Positive AOC3, LRRC17, and α-SMA expression were observed in colonic fibroblasts, more prominent in CAFs, whereas negative staining was found in SW620. Significant downregulation of AOC3, and upregulations in LRRC17 and α-SMA expression was found in TGF-β1-treated fibroblasts compared to SF medium treatment (p-value<0.05). All fibroblasts exhibited higher proliferation in complete medium and under treatment with conditioned medium from SW620 than SF medium. Significant contraction of NFs was recorded in complete medium and TGF-β1 (p-value<0.01).

    CONCLUSION: Our results demonstrate AOC3 and LRRC17 as the potential markers of CAF activation which promote CRC progression.

    Matched MeSH terms: Fibroblasts/pathology
  2. Taiyeb Ali TB, Siar CH
    PMID: 9522721
    Matched MeSH terms: Fibroblasts/pathology
  3. Majid ZA, Siar CH, Ling KC
    Med J Malaysia, 1986 Jun;41(2):179-82.
    PMID: 3821617
    An unusual case of fibrous epulis in a newborn is presented. The clinical appearance, histological features and method of treatment are described. A short review of the literature is also included.
    Matched MeSH terms: Fibroblasts/pathology
  4. Norhayati MM, Mazlyzam AL, Asmah R, Fuzina H, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2004 May;59 Suppl B:184-5.
    PMID: 15468879
    Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) evaluation were carried out in the in vivo skin construct using fibrin as biomaterial. To investigate its progressive remodeling, nude mice were grafted and the Extracellular Matrix (ECM) components were studied at four and eight weeks post-grafting. It was discovered that by 4 weeks of remodeling the skin construct acquired its native structure.
    Matched MeSH terms: Fibroblasts/pathology
  5. Foroozandeh P, Aziz AA, Mahmoudi M
    ACS Appl Mater Interfaces, 2019 Oct 30;11(43):39672-39687.
    PMID: 31633323 DOI: 10.1021/acsami.9b15533
    Clinical translation of nanotechnologies has limited success, at least in part, due to the existence of several overlooked factors on the nature of the nanosystem (e.g., physicochemical properties of nanoparticles), nanobio interfaces (e.g., protein corona composition), and the cellular characteristics (e.g., cell type). In the past decade, several ignored factors including personalized and disease-specific protein corona (a layer of formed biomolecules at the surface of nanoparticles upon their entrance into a biological fluid), incubating temperature, local temperature gradient, cell shape, and cell sex has been introduced. Here, it was hypothesized and validated cell age as another overlooked factor in the field of nanomedicine. To test our hypothesis, cellular toxicity and uptake profiles of our model nanoparticles (i.e., PEGylated quantum dots, QDs) were probed in young and senescent cells (i.e., IMR90 fibroblast cells from human fetal lung and CCD841CoN epithelial cells from human fetal colon) and the outcomes revealed substantial dependency of cell-nanoparticles interactions to the cell age. For example, it was observed that the PEGylated QDs were acutely toxic to senescent IMR90 and CCD841CoN cells, leading to lysosomal membrane permeabilization which caused cell necrosis; in contrast, the young cells were resilient to the exact same amount of QDs and the same incubation time. It was also found that the formation of protein corona could delay the QDs' toxicity on senescent cells. These findings suggest that the cellular aging process have a capacity to cause deteriorative effects on their organelles and normal functions. The outcomes of this study suggest the proof-of-concept that cell age may have critical role in biosystem responses to nanoparticle technologies. Therefore, the effect of cell age should be carefully considered on the nanobio interactions and the information about cellular age (e.g., passage number and age of the cell donor) should be included in the nanomedicine papers to facilitate clinical translation of nanotechnologies and to help scientists to better design and produce safe and efficient diagnostic/therapeutic age-specific nanoparticles.
    Matched MeSH terms: Fibroblasts/pathology
  6. Zakaria MA, Rajab NF, Chua EW, Selvarajah GT, Masre SF
    Cancer Invest, 2020 Sep;38(8-9):445-462.
    PMID: 32713210 DOI: 10.1080/07357907.2020.1802474
    Tissues become more rigid during tumorigenesis and have been identified as a driving factor for tumor growth. Here, we highlight the concept of tissue rigidity, contributing factors that increase tissue rigidity, and mechanisms that promote tumor growth initiated by increased tissue rigidity. Various factors lead to increased tissue rigidity, promoting tumor growth by activating focal adhesion kinase (FAK) and Rho-associated kinase (ROCK). Consequently, result in recruitment of cancer-associated fibroblasts (CAFs), epithelial-mesenchymal transition (EMT) and tumor protection from immunosurveillance. We also discussed the rationale for targeting tumor tissue rigidity and its potential for cancer treatment.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  7. Jayash SN, Hashim NM, Misran M, Baharuddin NA
    J Biomed Mater Res A, 2017 02;105(2):398-407.
    PMID: 27684563 DOI: 10.1002/jbm.a.35919
    The osteoprotegerin (OPG) system plays a critical role in bone remodelling by regulating osteoclast formation and activity. The study aimed to determine the physicochemical properties and biocompatibility of a newly formulated OPG-chitosan gel. The OPG-chitosan gel was formulated using human OPG protein and water-soluble chitosan. The physicochemical properties were determined using Fourier transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Gel morphology was determined using scanning electron microscopy (SEM) and then it was subjected to a protein release assay and biodegradability test. An in vitro cytotoxicity test on normal human periodontal ligament (NHPL) fibroblasts and normal human (NH) osteoblasts was carried out using the AlamarBlue assay. In vivo evaluation in a rabbit model involved creating critical-sized defects in calvarial bone, filling with the OPG-chitosan gel and sacrificing at 12 weeks. In vitro results demonstrated that the 25 kDa OPG-chitosan gel had the highest rate of protein release and achieved 90% degradation in 28 days. At 12 weeks, the defects filled with 25 kDa OPG-chitosan gel showed significant (p 
    Matched MeSH terms: Fibroblasts/pathology
  8. Jamal J, Roebuck MM, Lee SY, Frostick SP, Abbas AA, Merican AM, et al.
    Int J Biochem Cell Biol, 2020 09;126:105800.
    PMID: 32673644 DOI: 10.1016/j.biocel.2020.105800
    OBJECTIVES: To compare mechanobiological response of synovial fibroblasts (SFb) from OA patient cohorts under mechanical load and inflammatory stressors for better understanding of SFb homeostatic functions.

    METHODS: Primary SFb isolated from knee synovium of OA obese (OA-ob:SFb), OA-pre-obese (OA-Pob:SFb), non-OA arthroscopic (scope:SFb), and non-OA arthroscopic with cartilage damage (scope-CD:SFb) were exposed to OA-conditioned media (OACM), derived from OA obese (OA-ob:CM), OA-pre-obese (OA-Pob:CM), and mechanical stretch at either 0 %, 6 % or 10 % for 24 h. Differences in the mRNA levels of genes involved in extracellular matrix production, inflammation and secretory activity were measured.

    RESULTS: Despite the significant BMI differences between the OA-ob and OA-Pob groups, OA-Pob has more patients with underlying dyslipidaemia, and low-grade synovitis with higher levels of secreted proteins, CXCL8, COL4A1, CCL4, SPARC and FGF2 in OA-Pob:CM. All primary SFb exhibited anti-proliferative activity with both OA-CM. Mechanical stretch stimulated lubricin production in scope:SFb, higher TGFβ1 and COL1A1 expressions in scope-CD:SFb. OA-Pob:CM stimulated greater detrimental effects than the OA-ob:CM, with higher pro-inflammatory cytokines, IL1β, IL6, COX2 and proteases such as aggrecanases, ADAMTS4 and ADAMTS5, and lower ECM matrix, COL1A1 expressions in all SFb. OA-ob:SFb were unresponsive but expressed higher pro-inflammatory cytokines under OA-Pob:CM treatment.

    CONCLUSION: Both mechanical and inflammatory stressors regulate SFb molecular functions with heterogeneity in responses that are dependent on their pathological tissue of origins. While mechanical stretch promotes a favorable effect with enhanced lubricin production in scope:SFb and TGFβ1 and COL1A1 in scope-CD:SFb, the presence of excessively high OA-associated inflammatory mediators in OA-Pob:CM, predominantly SPARC, CXCL8 and FGF2 drive all SFb regardless of pathology, towards greater pro-inflammatory activities.

    Matched MeSH terms: Fibroblasts/pathology*
  9. Cirillo N, Hassona Y, Celentano A, Lim KP, Manchella S, Parkinson EK, et al.
    Carcinogenesis, 2017 01;38(1):76-85.
    PMID: 27803052 DOI: 10.1093/carcin/bgw113
    The interrelationship between malignant epithelium and the underlying stroma is of fundamental importance in tumour development and progression. In the present study, we used cancer-associated fibroblasts (CAFs) derived from genetically unstable oral squamous cell carcinomas (GU-OSCC), tumours that are characterized by the loss of genes such as TP53 and p16INK4A and with extensive loss of heterozygosity, together with CAFs from their more genetically stable (GS) counterparts that have wild-type TP53 and p16INK4A and minimal loss of heterozygosity (GS-OSCC). Using a systems biology approach to interpret the genome-wide transcriptional profile of the CAFs, we show that transforming growth factor-β (TGF-β) family members not only had biological relevance in silico but also distinguished GU-OSCC-derived CAFs from GS-OSCC CAFs and fibroblasts from normal oral mucosa. In view of the close association between TGF-β family members, we examined the expression of TGF-β1 and TGF-β2 in the different fibroblast subtypes and showed increased levels of active TGF-β1 and TGF-β2 in CAFs from GU-OSCC. CAFs from GU-OSCC, but not GS-OSCC or normal fibroblasts, induced epithelial-mesenchymal transition and down-regulated a broad spectrum of cell adhesion molecules resulting in epithelial dis-cohesion and invasion of target keratinocytes in vitro in a TGF-β-dependent manner. The results demonstrate that the TGF-β family of cytokines secreted by CAFs derived from genotype-specific oral cancer (GU-OSCC) promote, at least in part, the malignant phenotype by weakening intercellular epithelial adhesion.
    Matched MeSH terms: Fibroblasts/pathology; Cancer-Associated Fibroblasts/pathology*
  10. Lan YW, Chen CM, Chong KY
    Methods Mol Biol, 2021;2269:83-92.
    PMID: 33687673 DOI: 10.1007/978-1-0716-1225-5_6
    A co-culture model of mesenchymal stem cells (MSCs) and fibroblasts is an efficient and rapid method to evaluate the anti-fibrotic effects of MSCs-based cell therapy. Transforming growth factor (TGF)-β1 plays a key role in promotion of fibroblast activation and differentiation which can induce collagen deposition, increase ECM production in lung tissue, eventually resulted in pulmonary fibrosis. Here, we use this co-culture system and examine the ECM production in activated fibroblasts by western blot and quantitative real-time analysis to understand the therapeutic effects of MSCs.
    Matched MeSH terms: Fibroblasts/pathology
  11. Musa M
    Adv Med Sci, 2020 Mar;65(1):163-169.
    PMID: 31972467 DOI: 10.1016/j.advms.2019.12.001
    Besides malignant cells, the tumour microenvironment consists of various stromal cells such as cancer-associated fibroblasts (CAFs) and myofibroblasts. Accumulation of heterogeneous populations of stromal cells in solid tumours is associated with lower survival rates and cancer recurrence in patients. Certain limitations presented by conventional experimental designs and techniques in cancer research have led to poor understanding of the fundamental basis of cancer niche. Recent developments in single-cell techniques allow more in-depth studies of the tumour microenvironment. Analyses at the single-cell level enables the detection of rare cell types, characterization of intra-tumour cellular heterogeneity and analysis of the lineage output of malignant cells. This subsequently, provides valuable insights on better diagnostic methods and treatment avenues for cancer. This review explores the recent advancements and applications of single-cell technologies in cancer research pertaining to the study of stromal fibroblasts in the microenvironment of solid tumours.
    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology*
  12. Roselan MA, Ashari SE, Faujan NH, Mohd Faudzi SM, Mohamad R
    Molecules, 2020 Jun 04;25(11).
    PMID: 32512808 DOI: 10.3390/molecules25112616
    Tyrosinase inhibitors have become increasingly important targets for hyperpigmentation disease treatment. Kojic monooleate (KMO), synthesized from the esterification of kojic acid and oleic acid, has shown a better depigmenting effect than kojic acid. In this study, the process parameters include the speed of high shear, the time of high shear and the speed of the stirrer in the production of nanoemulsion containing KMO was optimized using Response Surface Methodology (RSM), as well as evaluated in terms of its physicochemical properties, safety and efficacy. The optimized condition for the formulation of KMO nanoemulsion was 8.04 min (time of high shear), 4905.42 rpm (speed of high shear), and 271.77 rpm (speed of stirrer), which resulted in a droplet size of 103.97 nm. An analysis of variance (ANOVA) showed that the fitness of the quadratic polynomial fit the experimental data with large F-values (148.79) and small p-values (p < 0.0001) and an insignificant lack of fit. The optimized nanoemulsion containing KMO with a pH value of 5.75, showed a high conductivity value (3.98 mS/cm), which indicated that the nanoemulsion containing KMO was identified as an oil-in-water type of nanoemulsion. The nanoemulsion remains stable (no phase separation) under a centrifugation test and displays accelerated stability during storage at 4, 25 and 45 °C over 90 days. The cytotoxicity assay showed that the optimized nanoemulsion was less toxic, with a 50% inhibition of cell viability (IC50) > 500 μg/mL, and that it can inhibit 67.12% of tyrosinase activity. This study reveals that KMO is a promising candidate for the development of a safe cosmetic agent to prevent hyperpigmentation.
    Matched MeSH terms: Fibroblasts/pathology
  13. Zohdi RM, Zakaria ZA, Yusof N, Mustapha NM, Abdullah MN
    PMID: 21504052 DOI: 10.1002/jbm.b.31828
    Malaysian sea cucumber was incorporated into hydrogel formulation by using electron beam irradiation technique and was introduced as novel cross-linked Gamat Hydrogel dressing. This study investigated whether Gamat Hydrogel enhanced repair of deep partial skin thickness burn wound in rats and its possible mechanism. Wounds were treated with either Gamat Hydrogel, control hydrogel, OpSite® film dressing or left untreated. Skin samples were taken at 7, 14, 21, and 28 days post burn for histological and molecular evaluations. Gamat Hydrogel markedly enhanced wound contraction and improved histological reorganization of the regenerating tissue. Furthermore, the dressing modulated the inflammatory responses, stimulated the activation and proliferation of fibroblasts, and enhanced rapid production of collagen fiber network with a consequently shorter healing time. The level of proinflammatory cytokines; IL-1α, IL-1β, and IL-6, were significantly reduced in Gamat Hydrogel treated wounds compared with other groups as assessed by reverse transcription-polymerase chain reaction (RT-PCR). In summary, our results showed that Gamat Hydrogel promoted burn wound repair via a complex mechanism involving stimulation of tissue regeneration and regulation of pro-inflammatory cytokines. The resultant wound healing effects were attributed to the synergistic effect of the hydrogel matrix and incorporated sea cucumber.
    Matched MeSH terms: Fibroblasts/pathology
  14. Mellone M, Hanley CJ, Thirdborough S, Mellows T, Garcia E, Woo J, et al.
    Aging (Albany NY), 2016 12 15;9(1):114-132.
    PMID: 27992856 DOI: 10.18632/aging.101127
    Cancer-associated fibroblasts (CAF) remain a poorly characterized, heterogeneous cell population. Here we characterized two previously described tumor-promoting CAF sub-types, smooth muscle actin (SMA)-positive myofibroblasts and senescent fibroblasts, identifying a novel link between the two. Analysis of CAF cultured ex vivo, showed that senescent CAF are predominantly SMA-positive; this was confirmed by immunochemistry in head & neck (HNSCC) and esophageal (EAC) cancers. In vitro, we found that fibroblasts induced to senesce develop molecular, ultrastructural and contractile features typical of myofibroblasts and this is dependent on canonical TGF-β signaling. Similar to TGF-β1-generated myofibroblasts, these cells secrete soluble factors that promote tumor cell motility. However, RNA-sequencing revealed significant transcriptomic differences between the two SMA-positive CAF groups, particularly in genes associated with extracellular matrix (ECM) deposition and organization, which differentially promote tumor cell invasion. Notably, second harmonic generation imaging and bioinformatic analysis of SMA-positive human HNSCC and EAC showed that collagen fiber organization correlates with poor prognosis, indicating that heterogeneity within the SMA-positive CAF population differentially impacts on survival. These results show that non-fibrogenic, SMA-positive myofibroblasts can be directly generated through induction of fibroblast senescence and suggest that senescence and myofibroblast differentiation are closely linked processes.
    Matched MeSH terms: Fibroblasts/pathology*; Myofibroblasts/pathology*
  15. Law JX, Chowdhury SR, Saim AB, Idrus RBH
    J Tissue Viability, 2017 Aug;26(3):208-215.
    PMID: 28615133 DOI: 10.1016/j.jtv.2017.05.003
    Advances in tissue engineering led to the development of various tissue-engineered skin substitutes (TESS) for the treatment of skin injuries. The majority of the autologous TESS required lengthy and costly cell expansion process to fabricate. In this study, we determine the possibility of using a low density of human skin cells suspended in platelet-rich plasma (PRP)-enriched medium to promote the healing of full-thickness skin wounds. To achieve this, full-thickness wounds of size 1.767 cm2 were created at the dorsum part of nude mice and treated with keratinocytes (2 × 104 cells/cm2) and fibroblasts (3 × 104 cells/cm2) suspended in 10% PRP-enriched medium. Wound examination was conducted weekly and the animals were euthanized after 2 weeks. Gross examination showed that re-epithelialization was fastest in the PRP+cells group at both day 7 and 14, followed by the PRP group and NT group receiving no treatment. Only the PRP+cells group achieved complete wound closure by 2 weeks. Epidermal layer was presence in the central region of the wound of the PRP+cells and PRP groups but absence in the NT group. Comparison between the PRP+cells and PRP groups showed that the PRP+cells-treated wound was more mature as indicated by the presence of thinner epidermis with single cell layer thick basal keratinocytes and less cellular dermis. In summary, the combination of low cell density and diluted PRP creates a synergistic effect which expedites the healing of full-thickness wounds. This combination has the potential to be developed as a rapid wound therapy via the direct application of freshly harvested skin cells in diluted PRP.
    Matched MeSH terms: Fibroblasts/pathology
  16. Kumcu E, Unverdi H, Kaymaz E, Oral O, Turkbey D, Hucmenoglu S
    Malays J Pathol, 2018 Aug;40(2):137-142.
    PMID: 30173230
    INTRODUCTION: Breast cancer is still a serious health problem in 21st century and diagnosis, treatment and prognosis of this malignant disease are subject to many research. While cancer research has been focused on tumour cells primarily, recent studies showed that tumour stroma contribute to carcinogenesis as well as tumour cells. Especially fibroblasts adjacent to epithelial tumour cells are not ordinary fibroblasts and play the critical role. Studies showed that these cancer associated fibroblasts (CAFs) have different genetic profile and protein expression. One of the differently expressed molecules recently found is podoplanin. Podoplanin, utilised as a lymphatic endothelial marker, is found to be expressed in CAFs. The aim of this study is to evaluate the relationship between the stromal expression of podoplanin in invasive breast carcinoma and clinicopathological parameters.

    MATERIALS & METHODS: Podoplanin expression was evaluated immunohistochemically in 153 breast cancers. Tumours with ≥ 10% distinct cytoplasmic podoplanin staining in CAFs were considered as positive.

    RESULTS: In 65.3% of analysed tumours, podoplanin expression was found positive in CAFs. According to our results, podoplanin positive CAFs correlated significantly with tumour size (p= 0.012), tumour grade (p= 0.032) and cerbB2 score (p= 0.032).

    DISCUSSION: Our results suggest that podoplanin expression by CAFs could predict poor patient outcome in breast carcinoma.

    Matched MeSH terms: Cancer-Associated Fibroblasts/pathology
  17. Lee KH, Abas F, Mohamed Alitheen NB, Shaari K, Lajis NH, Israf DA, et al.
    Int J Rheum Dis, 2015 Jul;18(6):616-27.
    PMID: 24832356 DOI: 10.1111/1756-185X.12341
    Synovial fibroblast has emerged as a potential cellular target in progressive joint destruction in rheumatoid arthritis development. In this study, BDMC33 (2,6-bis[2,5-dimethoxybenzylidene]cyclohexanone), a curcumin analogue with enhanced anti-inflammatory activity has been synthesized and the potency of BDMC33 on molecular and cellular basis of synovial fibroblasts (SF) were evaluated in vitro.
    Matched MeSH terms: Fibroblasts/pathology
  18. Makpol S, Jam FA, Khor SC, Ismail Z, Mohd Yusof YA, Ngah WZ
    Oxid Med Cell Longev, 2013;2013:298574.
    PMID: 24396567 DOI: 10.1155/2013/298574
    Biodynes, tocotrienol-rich fraction (TRF), and tocopherol have shown antiaging properties. However, the combined effects of these compounds on skin aging are yet to be investigated. This study aimed to elucidate the skin aging effects of biodynes, TRF, and tocopherol on stress-induced premature senescence (SIPS) model of human diploid fibroblasts (HDFs) by determining the expression of collagen and MMPs at gene and protein levels. Primary HDFs were treated with biodynes, TRF, and tocopherol prior to hydrogen peroxide (H2O2) exposure. The expression of COL1A1, COL3A1, MMP1, MMP2, MMP3, and MMP9 genes was determined by qRT-PCR. Type I and type III procollagen proteins were measured by Western blotting while the activities of MMPs were quantified by fluorometric Sensolyte MMP Kit. Our results showed that biodynes, TRF, and tocopherol upregulated collagen genes and downregulated MMP genes (P < 0.05). Type I procollagen and type III procollagen protein levels were significantly increased in response to biodynes, TRF, and tocopherol treatment (P < 0.05) with reduction in MMP-1, MMP-2, MMP-3, and MMP-9 activities (P < 0.05). These findings indicated that biodynes, TRF, and tocopherol effectively enhanced collagen synthesis and inhibited collagen degradation and therefore may protect the skin from aging.
    Matched MeSH terms: Fibroblasts/pathology*
  19. Alabsi AM, Ali R, Ali AM, Al-Dubai SA, Harun H, Abu Kasim NH, et al.
    Asian Pac J Cancer Prev, 2012;13(10):5131-6.
    PMID: 23244123
    Cancer is one of the major health problems worldwide and its current treatments have a number of undesired adverse side effects. Natural compounds may reduce these. Currently, a few plant products are being used to treat cancer. In this study, goniothalamin, a natural occurring styryl-lactone extracted from Goniothalamus macrophyllus, was investigated for cytotoxic properties against cervical cancer (HeLa), breast carcinoma (MCF-7) and colon cancer (HT29) cells as well as normal mouse fibroblast (3T3) using MTT assay. Fluorescence microscopy showed that GTN is able to induce apoptosis in HeLa cells in a time dependent manner. Flow cytometry further revealed HeLa cells treated with GTN to be arrested in the S phase. Phosphatidyl serine properties present during apoptosis enable early detection of the apoptosis in the cells. Using annexin V/PI double staining it could be shown that GTN induces early apoptosis on HeLa cells after 24, 48 and 72 h. It could be concluded that goniothalamin showing a promising cytotoxicity effect against several cancer cell lines including cervical cancer cells (HeLa) with apoptosis as the mode of cell death induced on HeLa cells by Goniothalamin was.
    Matched MeSH terms: Fibroblasts/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links