Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Sharifi-Rad M, Varoni EM, Salehi B, Sharifi-Rad J, Matthews KR, Ayatollahi SA, et al.
    Molecules, 2017 Dec 04;22(12).
    PMID: 29207520 DOI: 10.3390/molecules22122145
    Plants of the genus Zingiber (Family Zingiberaceae) are widely used throughout the world as food and medicinal plants. They represent very popular herbal remedies in various traditional healing systems; in particular, rhizome of Zingiber spp. plants has a long history of ethnobotanical uses because of a plethora of curative properties. Antimicrobial activity of rhizome essential oil has been extensively confirmed in vitro and attributed to its chemical components, mainly consisting of monoterpene and sesquiterpene hydrocarbons such as α-zingiberene, ar-curcumene, β-bisabolene and β-sesquiphellandrene. In addition, gingerols have been identified as the major active components in the fresh rhizome, whereas shogaols, dehydrated gingerol derivatives, are the predominant pungent constituents in dried rhizome. Zingiber spp. may thus represent a promising and innovative source of natural alternatives to chemical food preservatives. This approach would meet the increasing concern of consumers aware of the potential health risks associated with the conventional antimicrobial agents in food. This narrative review aims at providing a literature overview on Zingiber spp. plants, their cultivation, traditional uses, phytochemical constituents and biological activities.
    Matched MeSH terms: Food Preservatives/chemistry
  2. Muhialdin BJ, Algboory HL, Mohammed NK, Kadum H, Hussin ASM, Saari N, et al.
    Curr Drug Discov Technol, 2020;17(4):553-561.
    PMID: 31309892 DOI: 10.2174/1570163816666190715120038
    BACKGROUND: Despite the extensive research carried out to develop natural antifungal preservatives for food applications, there are very limited antifungal agents available to inhibit the growth of spoilage fungi in processed foods. Scope and Approach: Therefore, this review summarizes the discovery and development of antifungal peptides using lactic acid bacteria fermentation to prevent food spoilage by fungi. The focus of this review will be on the identification of antifungal peptides, potential sources, the possible modes of action and properties of peptides considered to inhibit the growth of spoilage fungi. Key Findings and Conclusions: Antifungal peptides generated by certain lactic acid bacteria strains have a high potential for applications in a broad range of foods. The mechanism of peptides antifungal activity is related to their properties such as low molecular weight, concentration and secondary structure. The antifungal peptides were proposed to be used as bio-preservatives to reduce and/or replace chemical preservatives.
    Matched MeSH terms: Food Preservatives/isolation & purification; Food Preservatives/pharmacology*; Food Preservatives/chemistry
  3. Wendy Voon, W.Y, Ghali, N.A., Rukayadi, Y., Meor Hussin, A.S.
    MyJurnal
    This study is conducted to investigate the effect of different concentrations of betel leaves extract on color, pH and microbiological in homemade chili bo. The homemade chili bo with different concentrations (0 mg/ml, 0.75 mg/ml, 1.25 mg/ml and 1.75 mg/ml) of betel leaves extract were prepared for analysis. The results showed that the color of chili bo became darker as the concentration of betel leaves extract increased. The extract showed significant in the pH of chili bo after 7 days in which the highest concentration of extract showed the highest value of pH 4.31. The aerobic microbial count was decreased as the concentration of betel leaves extract increased in chili bo. After 7 days of storage, the highest concentration of betel leaves extract showed the highest percentage of reduction (6%), while the control sample showed 2.41% of aerobic reduction. The study also found that the extract contain lesser yeast and mold count (5.22 log CFU/ml) in homemade chili bo compared to the control sample (5.31 log CFU/ml) after 7 days. Betel leaves extract can be considered as natural food preservatives in chili bo to reduce the growth of spoilage microorganism and thus enhance the shelf life of chili bo.
    Matched MeSH terms: Food Preservatives
  4. Chuah WW, Tan JS, Hazwani Oslan SN, Bothi Raja P
    Prep Biochem Biotechnol, 2024 Apr;54(4):514-525.
    PMID: 37694843 DOI: 10.1080/10826068.2023.2252047
    Lactic acid bacteria (LAB) can produce γ-aminobutyric acid (GABA) with antioxidant properties and sedative effects when it binds to the GABA receptor in the human brain. LAB can also produce bacteriocin-like inhibitory substances (BLIS) with antimicrobial capabilities during carbohydrate fermentation. GABA and BLIS are natural compounds with potential health benefits and food preservation properties. Lactobacillus brevis C23 was co-cultured with three different LABs as inducers, which produced the highest GABA content and BLIS activity. They were cultured in various plant-based media to obtain an edible and better-tasting final product over commercially available media like MRS broth. A coconut-based medium with additives was optimized using response surface methodology (RSM) to increase GABA and BLIS production. The optimized medium for maximum GABA production (3.22 ± 0.01 mg/mL) and BLIS activity (84.40 ± 0.44%) was a 5.5% coconut medium containing 0.23% glucose, 1.44% Tween 20, 0.48% L-glutamic acid, and 0.02% pyridoxine. Due to the presence of GABA, the cell-free supernatant (CFS) as a postbiotic showed higher antioxidant activity than other food preservatives like nisin and potassium sorbate. Finally, microbiological tests on food samples showed that the postbiotic was more effective than other preservatives at combating the growth of LAB, molds and coliform bacteria, making it a possible food preservative.
    Matched MeSH terms: Food Preservatives
  5. Jamaluddin N, Stuckey DC, Ariff AB, Faizal Wong FW
    Crit Rev Food Sci Nutr, 2018;58(14):2453-2465.
    PMID: 28609113 DOI: 10.1080/10408398.2017.1328658
    Bacteriocin is a proteinaceous biomolecule produced by bacteria (both Gram-positive and Gram-negative) that exhibits antimicrobial activity against closely related species, and food-borne pathogens. It has recently gained importance and attracted the attention of several researchers looking to produce it from various substrates and bacterial strains. This ushers in a new era of food preservation where the use of bacteriocin in food products will be an alternative to chemical preservatives, and heat treatment which are understood to cause unwanted side effects, and reduce sensory and nutritional quality. However, this new market depends on the success of novel downstream separation schemes from various types of crude feedstocks which are both effective and economic. This review focuses on the downstream separation of bacteriocin from various sources using both conventional and novel techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
    Matched MeSH terms: Food Preservatives/analysis; Food Preservatives/pharmacology*
  6. Mohammed Shafit H, Williams SK
    Poult Sci, 2010 Mar;89(3):594-602.
    PMID: 20181879 DOI: 10.3382/ps.2009-00412
    Research was conducted to manufacture and evaluate a restructured turkey breast product using the Fibrimex cold-set binding system, sodium diacetate (NaD), and sodium lactate (NaL) and to ascertain effects of the treatments on proximate composition, pH, psychrotrophic organisms, water activity, onset of rancidity (TBA), thaw loss, cooking yields, and objective color, and sensory characteristics. Whole turkey breasts were cut into 5-cm-thick strips; treated with either water only (control), 1.5% NaL, 2.0% NaL, 0.1% NaD, 1.5% NaL + 0.1% NaD, or 2.0% NaL + 0.1% NaD; blended with Fibrimex ingredients; stuffed into casings; and stored at -30 degrees C for 0, 1, 2, and 3 mo. After each storage period, frozen chubs were tempered at 4 degrees C, sliced into 1-cm-thick steaks, packaged in retail trays, stored at 0 degrees C to simulate retail storage, and analyzed after 0, 2, 4, 6, 8, and 10 d. Sodium diacetate used alone or in combination with NaL reduced (P < 0.05) growth of psychrotrophic organisms and had no adverse effects on water activity, pH, cooking yield, fat, moisture, protein, objective color, onset of rancidity, and sensory characteristics (juiciness, turkey flavor intensity, and tenderness). Panelists reported slight off-flavor in all steaks treated with NaL. Treating steaks with NaL alone or in combination with NaD resulted in increased (P < 0.05) ash content. Sodium lactate also functioned to minimize thaw loss in the frozen restructured turkey product.
    Matched MeSH terms: Food Preservatives/pharmacology; Food Preservatives/chemistry
  7. Yusof AS, Isa ZM, Shah SA
    Asian Pac J Cancer Prev, 2013;14(2):1151-4.
    PMID: 23621204
    BACKGROUND: Changes in dietary practices are known to be associated with changes in the health and disease pattern of a population. This study aimed to qualitatively explore the perception of colorectal cancer patients regarding causes of colorectal cancer and the influence of diet.

    MATERIALS AND METHODS: Twelve respondents from three major ethnicities in Malaysia were selected from the quantitative study on dietary pattern and colorectal cancer carried out earlier in this study. In-depth interviews (IDI), conducted from April until June 2012, were mainly in the Malay language with additional use of English and continued until the saturation point was reached. All interviews were autorecorded so that verbatim transcriptions could be created.

    RESULTS: Causes of colorectal cancer were categorized into internal and external factors. The majority of respondents agreed that there is an association between Western foods and colorectal cancer. Malaysian traditional diet was not related to colorectal cancer as less preservative agents were used. Malaysian diet preparation consisting of taste of cooking (spicy, salty and sour foods) plus type of cooking (fry, grilled and smoked) were considered causes of colorectal cancer. All respondents changed their dietary pattern to healthy food after being diagnosed with colorectal cancer. Advice from doctors regarding suitable food for colorectal cancer was useful in this regard.

    CONCLUSIONS: Eating outside, use of food flavoring ingredients and preservative agents were considered to be the main factors causing colorectal cancer. All respondents admitted that they changed to a healthy diet after being diagnosed with colorectal cancer.

    Matched MeSH terms: Food Preservatives/adverse effects
  8. Md Sidek NL, Halim M, Tan JS, Abbasiliasi S, Mustafa S, Ariff AB
    Biomed Res Int, 2018;2018:5973484.
    PMID: 30363649 DOI: 10.1155/2018/5973484
    Nowadays, bacteriocin industry has substantially grown replacing the role of chemical preservatives in enhancing shelf-life and safety of food. The progress in bacteriocin study has been supported by the emerging of consumer demand on the applications of natural food preservatives. Since food is a complex ecosystem, the characteristics of bacteriocin determine the effectiveness of their incorporation into the food products. Among four commercial media (M17 broth, MRS broth, tryptic soy broth, and nutrient broth) tested, the highest growth of Pediococcus acidilactici kp10 and bacteriocin-like-inhibitory substance (BLIS) production were obtained in the cultivation with M17. BLIS production was found to be a growth associated process where the production was increased concomitantly with the growth of producing strain, P. acidilactici kp10. The antimicrobial property of BLIS against three indicator microorganisms (Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus) remained stable upon heating at 100°C but not detectable at 121°C. The BLIS activity was also observed to be stable and active at a wide pH range (pH 2 to pH 7). The BLIS activity remained constant at -20°C and -80°C for 1 month of storage. However, the activity dropped after 3 and 6 months of storage at 4°C, -20°C, and -80°C with more than 80% reduction. The ability of bacteriocin from P. acidilactici kp10 to inhibit food-borne pathogens while remaining stable and active at extreme pH and temperature is of potential interest for future applications in food preservatives.
    Matched MeSH terms: Food Preservatives/pharmacology*
  9. Aziman N, Abdullah N, Noor ZM, Kamarudin WS, Zulkifli KS
    J Food Sci, 2014 Apr;79(4):M583-92.
    PMID: 24666004 DOI: 10.1111/1750-3841.12419
    Preliminary phytochemical and flavonoid compounds of aqueous and ethanolic extracts of 6 aromatic Malaysian herbs were screened and quantified using Reverse-Phase High Performance Liquid Chromatography (RP-HPLC). The herbal extracts were tested for their antimicrobial activity against 10 food-borne pathogenic and food spoilage microorganisms using disk diffusion assay. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC)/minimum fungicidal concentration (MFC) of herbal extracts were determined. In the phytochemical screening process, both aqueous and ethanolic extracts of P. hydropiper exhibited presence of all 7 tested phytochemical compounds. Among all herbal extracts, the aqueous P. hydropiper and E. elatior extracts demonstrated the highest antibacterial activity against 7 tested Gram-positive and Gram-negative bacteria with diameter ranging from 7.0 to 18.5 mm and 6.5 to 19 mm, respectively. The MIC values for aqueous and ethanolic extracts ranged from 18.75 to 175 mg/mL and 0.391 to 200 mg/mL, respectively while the MBC/MFC values for aqueous and ethanolic extracts ranged from 25 to 200 mg/mL and 3.125 to 50 mg/mL, respectively. Major types of bioactive compounds in aqueous P. hydropiper and E. elatior extracts were identified using RP-HPLC instrument. Flavonoids found in these plants were epi-catechin, quercetin, and kaempferol. The ability of aqueous Persicaria hydropiper (L.) H. Gross and Etlingera elatior (Jack) R.M. Sm. extracts to inhibit the growth of bacteria is an indication of its broad spectrum antimicrobial potential. Hence these herbal extracts may be used as natural preservative to improve the safety and shelf-life of food and pharmaceutical products.
    Matched MeSH terms: Food Preservatives/pharmacology; Food Preservatives/chemistry
  10. Choi EM, Kim YH
    Food Chem Toxicol, 2008 Jan;46(1):375-9.
    PMID: 17904263 DOI: 10.1016/j.fct.2007.08.018
    The present study was undertaken to determine whether Ligularia fischeri leaf extract (LF) is efficacious against collagen-induced arthritis (CIA) in mice. DBA/1J mice were immunized with bovine type II collagen and treated with LF (100 and 200 mg/kg) for 49 days. Mice were assessed regularly for signs of arthritis and the levels of rheumatoid factor, anti-type II collagen antibody, cytokines, AST, ALT, and creatinine in serum were also examined after the animals were killed. The arthritis score and paw edema were markedly suppressed in the groups treated with LF. Moreover, levels of rheumatoid factor, anti-type II collagen antibody, tumor necrosis factor-alpha, interleukin (IL)-1, and IL-6 in sera were reduced by LF administration. These data suggest that L. fischeri might be effective for the treatment of inflammatory arthritis like human rheumatoid arthritis.
    Matched MeSH terms: Food Preservatives/analysis; Food Preservatives/toxicity
  11. Sharif R, Ghazali AR, Rajab NF, Haron H, Osman F
    Food Chem Toxicol, 2008 Jan;46(1):368-74.
    PMID: 17900779
    Malaysian locally processed raw food products are widely used as main ingredients in local cooking. Previous studies showed that these food products have a positive correlation with the incidence of cancer. The cytotoxicity effect was evaluated using MTT assay (3-(4,5-dimetil-2-thiazolil)-2,5-diphenyl-2H-tetrazolium bromide) against Chang liver cells at 2000 microg/ml following 72 h incubation. Findings showed all methanol extracts caused a tremendous drop in the percentage of cell viability at 2000 microg/ml (shrimp paste - 41.69+/-3.36%, salted fish - 37.2+/-1.06%, dried shrimp - 40.32+/-1.8%, p<0.05). To detect DNA damage in a single cell, alkaline Comet Assay was used. None of the extracts caused DNA damage to the Chang liver cells at 62.5 microg/ml following 24 h incubation, as compared to the positive control, hydrogen peroxide (tail moment - 9.50+/-1.50; tail intensity - 30.50+/-2.50). Proximate analysis which was used for the evaluation of macronutrients in food showed that shrimp paste did not comply with the protein requirement (<25%) as in Food Act 1983. Salt was found in every sample with the highest percentage being detected in shrimp paste which exceeded 20%. Following heavy metal analysis (arsenic, cadmium, lead and mercury), arsenic was found in every sample with dried shrimps showing the highest value as compared to the other samples (6.16 mg/kg). In conclusion, several food extracts showed cytotoxic effect but did not cause DNA damage against Chang liver cells. Salt was found as the main additive and arsenic was present in every sample, which could be the probable cause of the toxicity effects observed.
    Matched MeSH terms: Food Preservatives/analysis; Food Preservatives/toxicity
  12. Roohinejad S, Koubaa M, Barba FJ, Saljoughian S, Amid M, Greiner R
    Food Res Int, 2017 09;99(Pt 3):1066-1083.
    PMID: 28865618 DOI: 10.1016/j.foodres.2016.08.016
    Edible seaweeds are a good source of antioxidants, dietary fibers, essential amino acids, vitamins, phytochemicals, polyunsaturated fatty acids, and minerals. Many studies have evaluated the gelling, thickening and therapeutic properties of seaweeds when they are used individually. This review gives an overview on the nutritional, textural, sensorial, and health-related properties of food products enriched with seaweeds and seaweed extracts. The effect of seaweed incorporation on properties of meat, fish, bakery, and other food products were highlighted in depth. Moreover, the positive effects of foods enriched with seaweeds and seaweed extracts on different lifestyle diseases such as obesity, dyslipidemia, hypertension, and diabetes were also discussed. The results of the studies demonstrated that the addition of seaweeds, in powder or extract form, can improve the nutritional and textural properties of food products. Additionally, low-fat products with less calories and less saturated fatty acids can be prepared using seaweeds. Moreover, the addition of seaweeds also affected the health properties of food products. The results of these studies demonstrated that the health value, shelf-life and overall quality of foods can be improved through the addition of either seaweeds or seaweed extracts.
    Matched MeSH terms: Food Preservatives/isolation & purification; Food Preservatives/pharmacology*
  13. Jawan R, Abbasiliasi S, Tan JS, Mustafa S, Halim M, Ariff AB
    Microorganisms, 2020 Sep 23;8(10).
    PMID: 32977375 DOI: 10.3390/microorganisms8101454
    Antibacterial peptides or bacteriocins produced by many strains of lactic acid bacteria have been used as food preservatives for many years without any known adverse effects. Bacteriocin titres can be modified by altering the physiological and nutritional factors of the producing bacterium to improve the production in terms of yield and productivity. The effects of culture conditions (initial pH, inoculum age and inoculum size) and medium compositions (organic and inorganic nitrogen sources; carbon sources) were assessed for the production of bacteriocin-like inhibitory substances (BLIS) by Lactococcus lactis Gh1 in shake flask cultures. An inoculum of the mid-exponential phase culture at 1% (v/v) was the optimal age and size, while initial pH of culture media at alkaline and acidic state did not show a significant impact on BLIS secretion. Organic nitrogen sources were more favourable for BLIS production compared to inorganic sources. Production of BLIS by L. lactis Gh1 in soytone was 1.28-times higher as compared to that of organic nitrogen sources ((NH4)2SO4). The highest cell concentration (XmX = 0.69 ± 0.026 g·L-1) and specific growth rate (μmax = 0.14 h-1) were also observed in cultivation using soytone. By replacing carbon sources with fructose, BLIS production was increased up to 34.94% compared to BHI medium, which gave the biomass cell concentration and specific growth rate of 0.66 ± 0.002 g·L-1 and 0.11 h-1, respectively. It can be concluded that the fermentation factors have pronounced influences on the growth of L. lactis Gh1 and BLIS production. Results from this study could be used for subsequent application in process design and optimisation for improving BLIS production by L. lactis Gh1 at larger scale.
    Matched MeSH terms: Food Preservatives
  14. WONG YEN WEN, FAUZIAH TUFAIL AHMAD
    MyJurnal
    Pumpkin (Cucurbita maxima) is a vegetable crop which is commonly consumed as vegetables or incorporated into food products. Pumpkin flesh was reported abundant with carotenoid compounds includes α-carotene, β-carotene, β-cryptoxanthin, lutein and zeaxanthin. As this antioxidant related to the colour pigment, these nutrients highly potential to be in other parts of pumpkin such as peel and seed. Therefore, the aim of this was to determine the total lutein content in different parts of pumpkin and their antioxidant properties. The pumpkin would be collected and evaluated at the commercial maturity stage (60% to fully orange-yellow of fruit peel). The presence of the lutein properties using DPPH, FRAP and ABTS assays in different parts of pumpkin was tested by using microplate spectrophotometer and analysed statistically with SPSS version 20. Among of all pumpkin fruit parts, flesh presented the highest concentration of potential lutein extracts, followed by peel and seed, respectively. On the contrary, potential lutein extracts from the pumpkin peel had the highest antioxidant activity in terms of DPPH, FRAP and ABTS assays when compared to the lutein extracts in flesh and seeds. This study indicates that the potential lutein from Cucurbita maxima especially peel may be the alternative to be used as both natural antioxidants in food products due to increasing demand for natural food preservatives. Therefore, this study may act as a source for others to further study to optimize the usage of pumpkin by-products
    Matched MeSH terms: Food Preservatives
  15. Yoga Latha, L., Darah, I., Sasidharan, S., Jain, K.
    Malays J Nutr, 2009;15(2):223-231.
    MyJurnal
    Chemical preservatives have been used in the food industry for many years. However, with increased health concerns, consumers prefer additive-free products or food preservatives based on natural products. This study evaluated antimicrobial activities of extracts from Emilia sonchifolia L. (Common name: lilac tassel flower), Tridax procumbens L. (Common name: tridax daisy) and Vernonia cinerea L. (Common name: Sahadevi), belonging to the Asteracea family, to explore their potential for use against general food spoilage and human pathogens so that new food preservatives may be developed. Three methanol extracts of these plants were tested in vitro against 20 bacterial species, 3 yeast species, and 12 filamentous fungi by the agar diffusion and broth dilution methods. The V. cinerea extract was found to be most effective against all of the tested organisms and the methanol fraction showed the most significant (p < 0.05) antimicrobial
    activity among all the soluble fractions tested. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.56 to 100.00mg/mL. The MIC of methanol fraction was the lowest in comparison to the other four extracts. The study findings indicate that bioactive natural products from these plants may be isolated for further testing as leads in the development of new pharmaceuticals in food preservation as well as natural plant-based medicine.
    Matched MeSH terms: Food Preservatives
  16. Azhar NS, Md Zin NH, Hamid THTA
    Trop Life Sci Res, 2017 Jul;28(2):107-118.
    PMID: 28890764 MyJurnal DOI: 10.21315/tlsr2017.28.2.8
    In this study, a Lactic acid bacteria (LAB) strain was isolated on MRS medium from gastro-intestinal tissues of Broadhead catfish (Clarias macrocephalus). Out of 50 isolates, 25 isolates were found to be positive on lactose utilisation test and were identified to be gram positive cocci. Using disc diffusion methods, one out of 22 isolates, i.e., a strain A5 demonstrated inhibitions against three indicator organisms; Bacillus cereus, Staphylococcus aureus and Salmonella thyphimurium. Partial 16S rDNA sequencing identified isolate A5 as a member of Lactococcus lactis, with 100% DNA homology. Cell free supernatant fluid from Lactococcus lactis A5 showed inhibitory activities against both gram positive pathogens (Bacillus cereus and Staphylococcus aureus) and gram negative pathogens (Salmonella thyphimurium). Chloroform precipitated bacteriocin retained antagonistic activities in the presence of catalase and lysozyme; and was completely inactivated by Proteinase K treatment. The bacteriocin has a molecular weight of 3.4 kDa, based on SDS-PAGE analysis and the extract was heat stable at 37°C and 65°C, for 15 minutes. The antibacterial activity was suppressed with the addition of EDTA but was significantly increased with the addition of SDS, Triton X-100, Tween 20 and Tween 80. This bacteriocin belongs to class 1 bacteriocin, which was shown to have a nisin-like properties. This strain can be used as potential probiotics in animal or aquaculture feeding; and the bacteriocin it produces will be useful in food preservative.
    Matched MeSH terms: Food Preservatives
  17. Velu, S., Abu Bakar, F., Saari, N., Zaman, M.Z., Mahyudin, N.A.
    MyJurnal
    The demand for novel antimicrobial agents from natural resources has been increased worldwide for food conservation purpose. In this study antimicrobial activity of musk lime, key lime and lemon were evaluated against various food borne pathogens and spoilage bacteria using disc diffusion test. Type of extraction solvent and concentration level significantly influenced the antibacterial activity of all the extracts. Ethanol extracts of musk lime, key lime and lemon exhibited significant broadest inhibitory activity at 100% concentration level (pure extract) compared to water and juice extracts. 100% ethanol extracts of musk lime (39.7 mm), key lime (26.7 mm) and lemon (32.0 mm) exhibited the largest diameter of inhibition zone (DIZ) against Aeromonas veronii. 100% water extracts of musk lime (25.3 mm), key lime juice extract (23.3 mm) and water extracts of lemon (23.7 mm) was most effective against food spoilage bacteria, A. veronii. The prominent results of the antimicrobial activity from lime, key lime and lemon extracts may attribute them as potential natural food preservatives and could be used in pharmaceuticals field.
    Matched MeSH terms: Food Preservatives
  18. Tang, J.Y.H., Carlson, J., Mohamad Ghazali, F., Saleha, A.A., Nishibuchi, M., Nakaguchi, Y., et al.
    MyJurnal
    The present study aimed to provide an insight of C. jejuni ATCC 33560 phenotype profiles (carbon sources and sensitivity to osmolytes and pH) using Phenotypic MicroArray (PM) system in response to optimal and suboptimal temperature. C. jejuni ATCC 33560 showed utilization carbon sources from amino acids and carboxylates but not from sugars. C. jejuni ATCC 33560 is sensitive to NaCl at 2% and above but showed survival in a wide range of food preservatives (sodium lactate, sodium phosphate, sodium benzoate, ammonium sulphate and sodium nitrate). When incubated at suboptimal temperature, no phenotype loss was observed in carbon source plates. Phenotype loss of C. jejuni ATCC 33560 was observed in sodium chloride (1%), sodium sulphate (2-3%), sodium formate (1%), sodium lactate (7-12%), sodium phosphate pH7 (100mM and 200mM), ammonium sulphate pH8 (50mM), sodium nitrate (60mM, 80mM and 100mM), sodium nitrite (10mM), and growth in pH5. The phenotypic profile from present study will provide a better insight related to survival of C. jejuni ATCC 33560.
    Matched MeSH terms: Food Preservatives
  19. Zakuan, Z., Mustapa, S.A., Sukor, R., Rukayadi, Y.
    MyJurnal
    The filamentous spoilage fungi in vegetables can lead to significant impact in food and economic loss. In order to overcome this problem, chemical fungicide has been implemented in vegetable farming and processing but it causes problems towards environment and food safety. Thus, the utilization of natural products such as plants extracts, which exhibit antimicrobial and antifungal activity, is more acceptable to solve this problem. The aim of this study is to investigate the antifungal activity of Boesenbergia rotunda extract against ten filamentous spoilage fungi isolated from five vegetables. The extract was used to treat fungal isolates from vegetables; CRb 002 (Penicillium sp.), CHa 009 (Aspergillus sp.), TMa 001 (Geotrichum sp.), TMa 002 (Aspergillus sp), ONb 001 (Aspergillus sp.), WBb 003 and WBb 004 (Fusarium sp.) WBb 007 (unidentified), WBb 008 (Aureobasidium sp.) and WBb 010 (Penicillium sp.). The results showed that the yield of the extract of B. rotunda using ethanol (95%) was 11.42% (w/v). The 10% of B. rotunda extract exhibited antifungal activities against ten filamentous fungi after 5 days treatment with growth reduction of 41.56%, 30.68%, 86.20%, 50.62%, 26.67%, 47.44%, 50.74%, 36.39%, 42.86%, and 39.39% for WBb 008, WBb 004, WBb 007, WBb 003, CRb 002, WBb 010, CHa 009, TMa 001, ONb 001, and TMa 002, respectively. B. rotunda extract showed highest antifungal activity against fungi isolated from winged bean (WBb 007) with percentage reduction in growth was 86.20%, while the lowest activity was against fungi isolated from the carrot (CRb 002) with 26.67% reduction in growth. Generally, the TPC of fungi in the vegetable samples were reduced after treatment with 5% of B. rotunda extract at 5 min and 10 min of exposure time. The results suggested that B. rotunda extract has high potential to become natural food preservative which can reduce the fungi spoilage of vegetables.
    Matched MeSH terms: Food Preservatives
  20. Sasidharan S, Zuraini Z, Yoga Latha L, Sangetha S, Suryani S
    Foodborne Pathog Dis, 2008 Jun;5(3):303-9.
    PMID: 18767977 DOI: 10.1089/fpd.2007.0078
    Consecutive chloroform, ethanol, and ethyl acetate partitions of extracts from winged bean [Psophocarpus tetragonolobus (L.) DC] root, stem, leaf, and pod extracts were tested for their antimicrobial activity against 19 microbial species, including 11 bacterial pathogens, four yeasts, and four molds using the disk diffusion assay technique. The pod extract was found to be most effective against all of the tested organisms, followed by the stem, root, and leaf extracts, and the ethanol fraction showed the most significant (p < 0.05) antimicrobial activity against all of the tests among three soluble fractions of extract, followed by the ethyl acetate and chloroform fractions. The minimum inhibitory concentrations (MICs) of extracts determined by the broth dilution method ranged from 1.25 to 10.0 mg/mL. The MIC of ethanol fraction of pod extracts was the lowest by comparison with the other two extracts. The MIC for fungi was at or below 2.5 mg/mL and for bacteria was at or above 2.5 mg/mL.
    Matched MeSH terms: Food Preservatives/pharmacology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links