Displaying publications 1 - 20 of 57 in total

Abstract:
Sort:
  1. Jorquera R, González C, Clausen P, Petersen B, Holmes DS
    Database (Oxford), 2018 01 01;2018:1-6.
    PMID: 30239665 DOI: 10.1093/database/bay089
    Efficient extraction of knowledge from biological data requires the development of structured vocabularies to unambiguously define biological terms. This paper proposes descriptions and definitions to disambiguate the term 'single-exon gene'. Eukaryotic Single-Exon Genes (SEGs) have been defined as genes that do not have introns in their protein coding sequences. They have been studied not only to determine their origin and evolution but also because their expression has been linked to several types of human cancer and neurological/developmental disorders and many exhibit tissue-specific transcription. Unfortunately, the term 'SEGs' is rife with ambiguity, leading to biological misinterpretations. In the classic definition, no distinction is made between SEGs that harbor introns in their untranslated regions (UTRs) versus those without. This distinction is important to make because the presence of introns in UTRs affects transcriptional regulation and post-transcriptional processing of the mRNA. In addition, recent whole-transcriptome shotgun sequencing has led to the discovery of many examples of single-exon mRNAs that arise from alternative splicing of multi-exon genes, these single-exon isoforms are being confused with SEGs despite their clearly different origin. The increasing expansion of RNA-seq datasets makes it imperative to distinguish the different SEG types before annotation errors become indelibly propagated in biological databases. This paper develops a structured vocabulary for their disambiguation, allowing a major reassessment of their evolutionary trajectories, regulation, RNA processing and transport, and provides the opportunity to improve the detection of gene associations with disorders including cancers, neurological and developmental diseases.
    Matched MeSH terms: Gene Ontology*
  2. Hussein ZA, Loke KK, Abidin RA, Othman R
    Bioinformation, 2011;7(4):157-62.
    PMID: 22102771
    Functional genomics has proven to be an efficient tool in identifying genes involved in various biological functions. However the availability of commercially important seaweed Eucheuma denticulatum functional resources is still limited. EuDBase is the first seaweed online repository that provides integrated access to ESTs of Eucheuma denticulatum generated from samples collected from Kudat and Semporna in Sabah, Malaysia. The database stored 10,031 ESTs that are clustered and assembled into 2,275 unique transcripts (UT) and 955 singletons. Raw data were automatically processed using ESTFrontier, an in-house automated EST analysis pipeline. Data was collected in MySQL database. Web interface is implemented using PHP and it allows browsing and querying EuDBase through search engine. Data is searchable via BLAST hit, domain search, Gene Ontology or KEGG Pathway. A user-friendly interface allows the identification of sequences either using a simple text query or similarity search. The development of EuDBase is initiated to store, manage and analyze the E. denticulatum ESTs and to provide accumulative digital resources for the use of global scientific community. EuDBase is freely available from http://www.inbiosis.ukm.my/eudbase/.
    Matched MeSH terms: Gene Ontology
  3. Mohd Ali N, Boo L, Yeap SK, Ky H, Satharasinghe DA, Liew WC, et al.
    PeerJ, 2016;4:e1536.
    PMID: 26788424 DOI: 10.7717/peerj.1536
    Decline in the therapeutic potential of bone marrow-derived mesenchymal stem cells (MSC) is often seen with older donors as compared to young. Although hypoxia is known as an approach to improve the therapeutic potential of MSC in term of cell proliferation and differentiation capacity, its effects on MSC from aged donors have not been well studied. To evaluate the influence of hypoxia on different age groups, MSC from young (<30 years) and aged (>60 years) donors were expanded under hypoxic (5% O2) and normal (20% O2) culture conditions. MSC from old donors exhibited a reduction in proliferation rate and differentiation potential together with the accumulation of senescence features compared to that of young donors. However, MSC cultured under hypoxic condition showed enhanced self-renewing and proliferation capacity in both age groups as compared to normal condition. Bioinformatic analysis of the gene ontology (GO) and KEGG pathway under hypoxic culture condition identified hypoxia-inducible miRNAs that were found to target transcriptional activity leading to enhanced cell proliferation, migration as well as decrease in growth arrest and apoptosis through the activation of multiple signaling pathways. Overall, differentially expressed miRNA provided additional information to describe the biological changes of young and aged MSCs expansion under hypoxic culture condition at the molecular level. Based on our findings, the therapeutic potential hierarchy of MSC according to donor's age group and culture conditions can be categorized in the following order: young (hypoxia) > young (normoxia) > old aged (hypoxia) > old aged (normoxia).
    Matched MeSH terms: Gene Ontology
  4. Sanusi NSNM, Rosli R, Halim MAA, Chan KL, Nagappan J, Azizi N, et al.
    Database (Oxford), 2018 01 01;2018.
    PMID: 30239681 DOI: 10.1093/database/bay095
    A set of Elaeis guineensis genes had been generated by combining two gene prediction pipelines: Fgenesh++ developed by Softberry and Seqping by the Malaysian Palm Oil Board. PalmXplore was developed to provide a scalable data repository and a user-friendly search engine system to efficiently store, manage and retrieve the oil palm gene sequences and annotations. Information deposited in PalmXplore includes predicted genes, their genomic coordinates, as well as the annotations derived from external databases, such as Pfam, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Information about genes related to important traits, such as those involved in fatty acid biosynthesis (FAB) and disease resistance, is also provided. The system offers Basic Local Alignment Search Tool homology search, where the results can be downloaded or visualized in the oil palm genome browser (MYPalmViewer). PalmXplore is regularly updated offering new features, improvements to genome annotation and new genomic sequences. The system is freely accessible at http://palmxplore.mpob.gov.my.
    Matched MeSH terms: Gene Ontology
  5. Ee Uli J, Yong CS, Yeap SK, Alitheen NB, Rovie-Ryan JJ, Mat Isa N, et al.
    BMC Res Notes, 2018 Dec 22;11(1):923.
    PMID: 30577850 DOI: 10.1186/s13104-018-4014-1
    OBJECTIVE: Using high-throughput RNA sequencing technology, this study aimed to sequence the transcriptome of kidney and liver tissues harvested from Peninsular Malaysia cynomolgus macaque (Macaca fascicularis). M. fascicularis are significant nonhuman primate models in the biomedical field, owing to the macaque's biological similarities with humans. The additional transcriptomic dataset will supplement the previously described Peninsular Malaysia M. fascicularis transcriptomes obtained in a past endeavour.

    RESULTS: A total of 75,350,240 sequence reads were obtained via Hi-seq 2500 sequencing technology. A total of 5473 significant differentially expressed genes were called. Gene ontology functional categorisation showed that cellular process, catalytic activity, and cell part categories had the highest number of expressed genes, while the metabolic pathways category possessed the highest number of expressed genes in the KEGG pathway analysis. The additional sequence dataset will further enrich existing M. fascicularis transcriptome assemblies, and provide a dataset for further downstream studies.

    Matched MeSH terms: Gene Ontology
  6. Sablok G, Pérez-Pulido AJ, Do T, Seong TY, Casimiro-Soriguer CS, La Porta N, et al.
    Front Plant Sci, 2016;7:878.
    PMID: 27446111 DOI: 10.3389/fpls.2016.00878
    Analysis of repetitive DNA sequence content and divergence among the repetitive functional classes is a well-accepted approach for estimation of inter- and intra-generic differences in plant genomes. Among these elements, microsatellites, or Simple Sequence Repeats (SSRs), have been widely demonstrated as powerful genetic markers for species and varieties discrimination. We present PlantFuncSSRs platform having more than 364 plant species with more than 2 million functional SSRs. They are provided with detailed annotations for easy functional browsing of SSRs and with information on primer pairs and associated functional domains. PlantFuncSSRs can be leveraged to identify functional-based genic variability among the species of interest, which might be of particular interest in developing functional markers in plants. This comprehensive on-line portal unifies mining of SSRs from first and next generation sequencing datasets, corresponding primer pairs and associated in-depth functional annotation such as gene ontology annotation, gene interactions and its identification from reference protein databases. PlantFuncSSRs is freely accessible at: http://www.bioinfocabd.upo.es/plantssr.
    Matched MeSH terms: Gene Ontology
  7. Wee JJ, Kumar S
    Genomics Inform, 2020 Dec;18(4):e39.
    PMID: 33412755 DOI: 10.5808/GI.2020.18.4.e39
    Alzheimer's disease (AD) is a chronic, progressive brain disorder that slowly destroys affected individuals' memory and reasoning faculties, and consequently, their ability to perform the simplest tasks. This study investigated the hub genes of AD. Proteins interact with other proteins and non-protein molecules, and these interactions play an important role in understanding protein function. Computational methods are useful for understanding biological problems, in particular, network analyses of protein-protein interactions. Through a protein network analysis, we identified the following top 10 hub genes associated with AD: PTGER3, C3AR1, NPY, ADCY2, CXCL12, CCR5, MTNR1A, CNR2, GRM2, and CXCL8. Through gene enrichment, it was identified that most gene functions could be classified as integral to the plasma membrane, G-protein coupled receptor activity, and cell communication under gene ontology, as well as involvement in signal transduction pathways. Based on the convergent functional genomics ranking, the prioritized genes were NPY, CXCL12, CCR5, and CNR2.
    Matched MeSH terms: Gene Ontology
  8. Samad AFA, Nazaruddin N, Murad AMA, Jani J, Zainal Z, Ismail I
    3 Biotech, 2018 Mar;8(3):136.
    PMID: 29479512 DOI: 10.1007/s13205-018-1164-8
    In current era, majority of microRNA (miRNA) are being discovered through computational approaches which are more confined towards model plants. Here, for the first time, we have described the identification and characterization of novel miRNA in a non-model plant, Persicaria minor (P. minor) using computational approach. Unannotated sequences from deep sequencing were analyzed based on previous well-established parameters. Around 24 putative novel miRNAs were identified from 6,417,780 reads of the unannotated sequence which represented 11 unique putative miRNA sequences. PsRobot target prediction tool was deployed to identify the target transcripts of putative novel miRNAs. Most of the predicted target transcripts (mRNAs) were known to be involved in plant development and stress responses. Gene ontology showed that majority of the putative novel miRNA targets involved in cellular component (69.07%), followed by molecular function (30.08%) and biological process (0.85%). Out of 11 unique putative miRNAs, 7 miRNAs were validated through semi-quantitative PCR. These novel miRNAs discoveries in P. minor may develop and update the current public miRNA database.
    Matched MeSH terms: Gene Ontology
  9. Abu Bakar MF, Kamerkar U, Abdul Rahman SN, Muhd Sakaff MKL, Othman AS
    Data Brief, 2020 Oct;32:106188.
    PMID: 32904357 DOI: 10.1016/j.dib.2020.106188
    Hevea brasiliensis is exploited for its latex production, and it is the only viable source of natural rubber worldwide. The demand for natural rubber remains high due its high-quality properties, which synthetic rubber cannot compete with. In this paper, we present transcriptomic data and analysis of three H. brasiliensis clones using tissue from latex and bark tissues collected from 10-year-old plant. The combined, assembled transcripts were mapped onto an H. brasiliensis draft genome. Gene ontology analysis showed that the most abundant transcripts related to molecular functions, followed by biological processes and cellular components. Simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) were also identified, and these can be useful for selection of parental and new clones in a breeding program. Data generated by RNA sequencing were deposited in the NCBI public repository under accession number PRJNA629890.
    Matched MeSH terms: Gene Ontology
  10. Kumar IS, Nadarajah K
    Plants (Basel), 2020 Nov 05;9(11).
    PMID: 33167299 DOI: 10.3390/plants9111491
    Rice blast, sheath blight and bacterial leaf blight are major rice diseases found worldwide. The development of resistant cultivars is generally perceived as the most effective way to combat these diseases. Plant disease resistance is a polygenic trait where a combinatorial effect of major and minor genes affects this trait. To locate the source of this trait, various quantitative trait loci (QTL) mapping studies have been performed in the past two decades. However, investigating the congruency between the reported QTL is a daunting task due to the heterogeneity amongst the QTLs studied. Hence, the aim of our study is to integrate the reported QTLs for resistance against rice blast, sheath blight and bacterial leaf blight and objectively analyze and consolidate the location of QTL clusters in the chromosomes, reducing the QTL intervals and thus identifying candidate genes within the selected meta-QTL. A total of twenty-seven studies for resistance QTLs to rice blast (8), sheath blight (15) and bacterial leaf blight (4) was compiled for QTL projection and analyses. Cumulatively, 333 QTLs associated with rice blast (114), sheath blight (151) and bacterial leaf blight (68) resistance were compiled, where 303 QTLs could be projected onto a consensus map saturated with 7633 loci. Meta-QTL analysis on 294 QTLs yielded 48 meta-QTLs, where QTLs with membership probability lower than 60% were excluded, reducing the number of QTLs within the meta-QTL to 274. Further, three meta-QTL regions (MQTL2.5, MQTL8.1 and MQTL9.1) were selected for functional analysis on the basis that MQTL2.5 harbors the highest number of QTLs; meanwhile, MQTL8.1 and MQTL9.1 have QTLs associated with all three diseases mentioned above. The functional analysis allows for determination of enriched gene ontology and resistance gene analogs (RGAs) and other defense-related genes. To summarize, MQTL2.5, MQTL8.1 and MQTL9.1 have a considerable number of R-genes that account for 10.21%, 4.08% and 6.42% of the total genes found in these meta-QTLs, respectively. Defense genes constitute around 3.70%, 8.16% and 6.42% of the total number of genes in MQTL2.5, MQTL8.1 and MQTL9.1, respectively. This frequency is higher than the total frequency of defense genes in the rice genome, which is 0.0096% (167 defense genes/17,272 total genes). The integration of the QTLs facilitates the identification of QTL hotspots for rice blast, sheath blight and bacterial blight resistance with reduced intervals, which helps to reduce linkage drag in breeding. The candidate genes within the promising regions could be utilized for improvement through genetical engineering.
    Matched MeSH terms: Gene Ontology
  11. Liew FF, Chew BC, Ooi J
    Curr Mol Med, 2021 Apr 05.
    PMID: 33820518 DOI: 10.2174/1566524021666210405131238
    Wound healing is an elaborated process, well-regulated via cell migration and proliferation. Although the physiological basics of wound healing have been thoroughly investigated and reported, much remain to be studied. Particularly, various studies have demonstrated the immunomodulatory roles of exosomes derived from plant cells, mammalian cells and mesenchymal stem cells (MSCs) in the healing and repair system. The paracrine and therapeutic effects of exosomes are mainly associated with the broad exosomal cargo content comprising of growth factors, cytokines, enzymes, nucleic acids, proteins and lipid signaling molecules. Nevertheless, functional or mechanism pathway of exosomes with reference to overall exosomal cargo remains undetermined. To date, combinatorial analysis strategies employing Database for Annotation, Visualization, and Integrated Discovery (DAVID), STRING tools, Gene Ontology (GO), Kyoto Encyclopedia of Genes, Genomes (KEGG) pathway enrichment analysis, as well as Ingenuity Pathway Analysis (IPA) have been applied in elucidating network interaction and functional pathway of exosomes. In this review paper, application of combinatorial analysis strategies is demonstrated to better understand on the therapeutic potentials of exosomes in wound healing process. In conclusion, functional modulation of exosomal cargo for specify biological treatment is achievable, modelling of combinatorial analysis strategies will hopefully bridge the research gap and provides a paradigm shift to regenerative processes.
    Matched MeSH terms: Gene Ontology
  12. Kumarasingha R, Young ND, Yeo TC, Lim DSL, Tu CL, Palombo EA, et al.
    Parasit Vectors, 2019 Apr 25;12(1):181.
    PMID: 31023350 DOI: 10.1186/s13071-019-3429-4
    BACKGROUND: Natural compounds from plants are known to provide a source of anthelmintic molecules. In previous studies, we have shown that plant extracts from the plant Picria fel-terrae Lour. and particular fractions thereof have activity against the free-living nematode Caenorhabditis elegans, causing quite pronounced stress responses in this nematode. We have also shown that a fraction, designated Pf-fraction 5, derived from this plant has a substantial adverse effect on this worm; however, nothing is known about the molecular processes affected in the worm. In the present study, we explored this aspect.

    RESULTS: Key biological processes linked to upregulated genes (n = 214) included 'response to endoplasmic reticulum stress' and 'lipid metabolism', and processes representing downregulated genes (n = 357) included 'DNA-conformation change' and 'cellular lipid metabolism'.

    CONCLUSIONS: Exposure of C. elegans to Pf-fraction 5 induces significant changes in the transcriptome. Gene ontology analysis suggests that Pf-fraction 5 induces endoplasmic reticulum and mitochondrial stress, and the changes in gene expression are either a direct or indirect consequence of this. Further work is required to assess specific responses to sub-fractions of Pf-fraction 5 in time-course experiments in C. elegans, to define the chemical(s) with potent anthelmintic properties, to attempt to unravel their mode(s) of action and to assess their selectivity against nematodes.

    Matched MeSH terms: Gene Ontology
  13. Abdul Rahman SN, Bakar MFA, Singham GV, Othman AS
    3 Biotech, 2019 Nov;9(11):388.
    PMID: 31656726 DOI: 10.1007/s13205-019-1921-3
    In this study, RNA sequencing of several Hevea brasiliensis clones grown in Malaysia with different annual rubber production yields and disease resistance was performed on the Illumina platform. A total of 29,862,548 reads were generated, resulting in 101,269 assembled transcripts that were used as the reference transcripts. A similarity search against the non-redundant (nr) protein databases presented 83,771 (83%) positive BLASTx hits. The transcriptome was annotated using gene ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Pfam database. A search for putative molecular markers was performed to identify single-nucleotide polymorphisms (SNPs). Overall, 3,210,629 SNPs were detected and a total of 1314 SNPs associated with the genes involved in MVA and MEP pathways were identified. A total of 176 SNP primer pairs were designed from sequences that were related to the MVA and MEP pathways. The transcriptome of RRIM 3001 and RRIM 712 were subjected to pairwise comparison and the results revealed that there were 1262 significantly differentially expressed genes unique to RRIM 3001, 1499 significantly differentially expressed genes unique to RRIM 712 and several genes related to the MVA and MEP pathways such as AACT, HMGS, PMK, MVD, DXS and HDS were included. The results will facilitate the characterization of H. brasiliensis transcriptomes and the development of a new set of molecular markers in the form of SNPs from transcriptome assembly for the genotype identification of various rubber varieties with superior traits in Malaysia.
    Matched MeSH terms: Gene Ontology
  14. Moorthy K, Jaber AN, Ismail MA, Ernawan F, Mohamad MS, Deris S
    Methods Mol Biol, 2019;1986:255-266.
    PMID: 31115893 DOI: 10.1007/978-1-4939-9442-7_12
    In gene expression studies, missing values are a common problem with important consequences for the interpretation of the final data (Satija et al., Nat Biotechnol 33(5):495, 2015). Numerous bioinformatics examination tools are used for cancer prediction, including the data set matrix (Bailey et al., Cell 173(2):371-385, 2018); thus, it is necessary to resolve the problem of missing-values imputation. This chapter presents a review of the research on missing-values imputation approaches for gene expression data. By using local and global correlation of the data, we were able to focus mostly on the differences between the algorithms. We classified the algorithms as global, hybrid, local, or knowledge-based techniques. Additionally, this chapter presents suitable assessments of the different approaches. The purpose of this review is to focus on developments in the current techniques for scientists rather than applying different or newly developed algorithms with identical functional goals. The aim was to adapt the algorithms to the characteristics of the data.
    Matched MeSH terms: Gene Ontology
  15. Ramzi AB, Che Me ML, Ruslan US, Baharum SN, Nor Muhammad NA
    PeerJ, 2019;7:e8065.
    PMID: 31879570 DOI: 10.7717/peerj.8065
    Background: G. boninense is a hemibiotrophic fungus that infects oil palms (Elaeis guineensis Jacq.) causing basal stem rot (BSR) disease and consequent massive economic losses to the oil palm industry. The pathogenicity of this white-rot fungus has been associated with cell wall degrading enzymes (CWDEs) released during saprophytic and necrotrophic stage of infection of the oil palm host. However, there is a lack of information available on the essentiality of CWDEs in wood-decaying process and pathogenesis of this oil palm pathogen especially at molecular and genome levels.

    Methods: In this study, comparative genome analysis was carried out using the G. boninense NJ3 genome to identify and characterize carbohydrate-active enzyme (CAZymes) including CWDE in the fungal genome. Augustus pipeline was employed for gene identification in G. boninense NJ3 and the produced protein sequences were analyzed via dbCAN pipeline and PhiBase 4.5 database annotation for CAZymes and plant-host interaction (PHI) gene analysis, respectively. Comparison of CAZymes from G. boninense NJ3 was made against G. lucidum, a well-studied model Ganoderma sp. and five selected pathogenic fungi for CAZymes characterization. Functional annotation of PHI genes was carried out using Web Gene Ontology Annotation Plot (WEGO) and was used for selecting candidate PHI genes related to cell wall degradation of G. boninense NJ3.

    Results: G. boninense was enriched with CAZymes and CWDEs in a similar fashion to G. lucidum that corroborate with the lignocellulolytic abilities of both closely-related fungal strains. The role of polysaccharide and cell wall degrading enzymes in the hemibiotrophic mode of infection of G. boninense was investigated by analyzing the fungal CAZymes with necrotrophic Armillaria solidipes, A. mellea, biotrophic Ustilago maydis, Melampsora larici-populina and hemibiotrophic Moniliophthora perniciosa. Profiles of the selected pathogenic fungi demonstrated that necrotizing pathogens including G. boninense NJ3 exhibited an extensive set of CAZymes as compared to the more CAZymes-limited biotrophic pathogens. Following PHI analysis, several candidate genes including polygalacturonase, endo β-1,3-xylanase, β-glucanase and laccase were identified as potential CWDEs that contribute to the plant host interaction and pathogenesis.

    Discussion: This study employed bioinformatics tools for providing a greater understanding of the biological mechanisms underlying the production of CAZymes in G. boninense NJ3. Identification and profiling of the fungal polysaccharide- and lignocellulosic-degrading enzymes would further facilitate in elucidating the infection mechanisms through the production of CWDEs by G. boninense. Identification of CAZymes and CWDE-related PHI genes in G. boninense would serve as the basis for functional studies of genes associated with the fungal virulence and pathogenicity using systems biology and genetic engineering approaches.

    Matched MeSH terms: Gene Ontology
  16. Appunni S, Rubens M, Ramamoorthy V, Sharma H, Singh AK, Swarup V, et al.
    Malays J Med Sci, 2020 Dec;27(6):53-67.
    PMID: 33447134 DOI: 10.21315/mjms2020.27.6.6
    Background: Ischaemic stroke (IS), a multifactorial neurological disorder, is mediated by interplay between genes and the environment and, thus, blood-based IS biomarkers are of significant clinical value. Therefore, this study aimed to find global differentially expressed genes (DEGs) in-silico, to identify key enriched genes via gene set enrichment analysis (GSEA) and to determine the clinical significance of these genes in IS.

    Methods: Microarray expression dataset GSE22255 was retrieved from the Gene Expression Omnibus (GEO) database. It includes messenger ribonucleic acid (mRNA) expression data for the peripheral blood mononuclear cells of 20 controls and 20 IS patients. The bioconductor-package 'affy' was used to calculate expression and a pairwise t-test was applied to screen DEGs (P < 0.01). Further, GSEA was used to determine the enrichment of DEGs specific to gene ontology (GO) annotations.

    Results: GSEA analysis revealed 21 genes to be significantly plausible gene markers, enriched in multiple pathways among all the DEGs (n = 881). Ten gene sets were found to be core enriched in specific GO annotations. JunD, NCX3 and fibroblast growth factor receptor 4 (FGFR4) were under-represented and glycoprotein M6-B (GPM6B) was persistently over-represented.

    Conclusion: The identified genes are either associated with the pathophysiology of IS or they affect post-IS neuronal regeneration, thereby influencing clinical outcome. These genes should, therefore, be evaluated for their utility as suitable markers for predicting IS in clinical scenarios.

    Matched MeSH terms: Gene Ontology
  17. Mokhtar SS, Marshall CR, Phipps ME, Thiruvahindrapuram B, Lionel AC, Scherer SW, et al.
    PLoS One, 2014;9(6):e100371.
    PMID: 24956385 DOI: 10.1371/journal.pone.0100371
    Copy number variation (CNV) has been recognized as a major contributor to human genome diversity. It plays an important role in determining phenotypes and has been associated with a number of common and complex diseases. However CNV data from diverse populations is still limited. Here we report the first investigation of CNV in the indigenous populations from Peninsular Malaysia. We genotyped 34 Negrito genomes from Peninsular Malaysia using the Affymetrix SNP 6.0 microarray and identified 48 putative novel CNVs, consisting of 24 gains and 24 losses, of which 5 were identified in at least 2 unrelated samples. These CNVs appear unique to the Negrito population and were absent in the DGV, HapMap3 and Singapore Genome Variation Project (SGVP) datasets. Analysis of gene ontology revealed that genes within these CNVs were enriched in the immune system (GO:0002376), response to stimulus mechanisms (GO:0050896), the metabolic pathways (GO:0001852), as well as regulation of transcription (GO:0006355). Copy number gains in CNV regions (CNVRs) enriched with genes were significantly higher than the losses (P value <0.001). In view of the small population size, relative isolation and semi-nomadic lifestyles of this community, we speculate that these CNVs may be attributed to recent local adaptation of Negritos from Peninsular Malaysia.
    Matched MeSH terms: Gene Ontology
  18. Said NA, Gould CM, Lackovic K, Simpson KJ, Williams ED
    Assay Drug Dev Technol, 2014 Sep;12(7):385-94.
    PMID: 25181411 DOI: 10.1089/adt.2014.593
    Metastasis accounts for the poor prognosis of the majority of solid tumors. The phenotypic transition of nonmotile epithelial tumor cells to migratory and invasive "mesenchymal" cells (epithelial-to-mesenchymal transition [EMT]) enables the transit of cancer cells from the primary tumor to distant sites. There is no single marker of EMT; rather, multiple measures are required to define cell state. Thus, the multiparametric capability of high-content screening is ideally suited for the comprehensive analysis of EMT regulators. The aim of this study was to generate a platform to systematically identify functional modulators of tumor cell plasticity using the bladder cancer cell line TSU-Pr1-B1 as a model system. A platform enabling the quantification of key EMT characteristics, cell morphology and mesenchymal intermediate filament vimentin, was developed using the fluorescent whole-cell-tracking reagent CMFDA and a fluorescent promoter reporter construct, respectively. The functional effect of genome-wide modulation of protein-coding genes and miRNAs coupled with those of a collection of small-molecule kinase inhibitors on EMT was assessed using the Target Activation Bioapplication integrated in the Cellomics ArrayScan platform. Data from each of the three screens were integrated to identify a cohort of targets that were subsequently examined in a validation assay using siRNA duplexes. Identification of established regulators of EMT supports the utility of this screening approach and indicated capacity to identify novel regulators of this plasticity program. Pathway analysis coupled with interrogation of cancer-related expression profile databases and other EMT-related screens provided key evidence to prioritize further experimental investigation into the molecular regulators of EMT in cancer cells.
    Matched MeSH terms: Gene Ontology
  19. Roslan ND, Yusop JM, Baharum SN, Othman R, Mohamed-Hussein ZA, Ismail I, et al.
    Int J Mol Sci, 2012;13(3):2692-706.
    PMID: 22489118 DOI: 10.3390/ijms13032692
    P. minus is an aromatic plant, the leaf of which is widely used as a food additive and in the perfume industry. The leaf also accumulates secondary metabolites that act as active ingredients such as flavonoid. Due to limited genomic and transcriptomic data, the biosynthetic pathway of flavonoids is currently unclear. Identification of candidate genes involved in the flavonoid biosynthetic pathway will significantly contribute to understanding the biosynthesis of active compounds. We have constructed a standard cDNA library from P. minus leaves, and two normalized full-length enriched cDNA libraries were constructed from stem and root organs in order to create a gene resource for the biosynthesis of secondary metabolites, especially flavonoid biosynthesis. Thus, large-scale sequencing of P. minus cDNA libraries identified 4196 expressed sequences tags (ESTs) which were deposited in dbEST in the National Center of Biotechnology Information (NCBI). From the three constructed cDNA libraries, 11 ESTs encoding seven genes were mapped to the flavonoid biosynthetic pathway. Finally, three flavonoid biosynthetic pathway-related ESTs chalcone synthase, CHS (JG745304), flavonol synthase, FLS (JG705819) and leucoanthocyanidin dioxygenase, LDOX (JG745247) were selected for further examination by quantitative RT-PCR (qRT-PCR) in different P. minus organs. Expression was detected in leaf, stem and root. Gene expression studies have been initiated in order to better understand the underlying physiological processes.
    Matched MeSH terms: Gene Ontology
  20. Mohamed Yusoff A, Tan TK, Hari R, Koepfli KP, Wee WY, Antunes A, et al.
    Sci Rep, 2016 09 13;6:28199.
    PMID: 27618997 DOI: 10.1038/srep28199
    Pangolins are scale-covered mammals, containing eight endangered species. Maintaining pangolins in captivity is a significant challenge, in part because little is known about their genetics. Here we provide the first large-scale sequencing of the critically endangered Manis javanica transcriptomes from eight different organs using Illumina HiSeq technology, yielding ~75 Giga bases and 89,754 unigenes. We found some unigenes involved in the insect hormone biosynthesis pathway and also 747 lipids metabolism-related unigenes that may be insightful to understand the lipid metabolism system in pangolins. Comparative analysis between M. javanica and other mammals revealed many pangolin-specific genes significantly over-represented in stress-related processes, cell proliferation and external stimulus, probably reflecting the traits and adaptations of the analyzed pregnant female M. javanica. Our study provides an invaluable resource for future functional works that may be highly relevant for the conservation of pangolins.
    Matched MeSH terms: Gene Ontology
Filters
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links