Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Hoh BP, Siraj SS, Tan SG, Yusoff K
    Genet. Mol. Res., 2013;12(3):2578-93.
    PMID: 23479146 DOI: 10.4238/2013.February.28.1
    The river catfish Mystus nemurus is an important fresh water species for aquaculture in Malaysia. We report the first genetic linkage map of M. nemurus based on segregation analysis and a linkage map using newly developed microsatellite markers of M. nemurus. A total of 70 of the newly developed polymorphic DNA microsatellite markers were analyzed on pedigrees generated using a pseudo-testcross strategy from 2 mapping families. In the first mapping family, 100 offspring were produced from randomly selected dams of the same populations; dams of the second family were selected from 2 different populations, and this family had 50 offspring. Thirty-one of the 70 markers segregated according to the Mendelian segregation ratio. Linkage analysis revealed that 17 microsatellite markers belonging to 7 linkage groups were obtained at a logarithm of the odds score of 1.2 spanning 584 cM by the Kosambi mapping function, whereas the other 14 remained unlinked. The results from this study will act as primer to a more extensive genetic mapping study aimed towards identifying genetic loci involved in determining economically important traits.
    Matched MeSH terms: Genetic Linkage*
  2. Mohd Shaha FR, Liew PL, Qamaruz Zaman F, Nulit R, Barin J, Rolland J, et al.
    PeerJ, 2024;12:e16570.
    PMID: 38313025 DOI: 10.7717/peerj.16570
    BACKGROUND: Oil palm (Elaeis guineensis Jacq.) is one of the major oil-producing crops. Improving the quality and increasing the production yield of oil palm have been the primary focuses of both conventional and modern breeding approaches. However, the conventional breeding approach for oil palm is very challenging due to its longevity, which results in a long breeding cycle. Thus, the establishment of marker assisted selection (MAS) for oil palm breeding programs would speed up the breeding pipeline by generating new oil palm varieties that possess high commercial traits. With the decreasing cost of sequencing, Genotyping-by-sequencing (GBS) is currently feasible to many researchers and it provides a platform to accelerate the discovery of single nucleotide polymorphism (SNP) as well as insertion and deletion (InDel) markers for the construction of a genetic linkage map. A genetic linkage map facilitates the identification of significant DNA regions associated with the trait of interest via quantitative trait loci (QTL) analysis.

    METHODS: A mapping population of 112 F1 individuals from a cross of Deli dura and Serdang pisifera was used in this study. GBS libraries were constructed using the double digestion method with HindIII and TaqI enzymes. Reduced representation libraries (RRL) of 112 F1 progeny and their parents were sequenced and the reads were mapped against the E. guineensis reference genome. To construct the oil palm genetic linkage map, informative SNP and InDel markers were used to discover significant DNA regions associated with the traits of interest. The nine traits of interest in this study were fresh fruit bunch (FFB) yield, oil yield (OY), oil to bunch ratio (O/B), oil to dry mesocarp ratio (O/DM) ratio, oil to wet mesocarp ratio (O/WM), mesocarp to fruit ratio (M/F), kernel to fruit ratio (K/F), shell to fruit ratio (S/F), and fruit to bunch ratio (F/B).

    RESULTS: A total of 2.5 million SNP and 153,547 InDel markers were identified. However, only a subset of 5,278 markers comprising of 4,838 SNPs and 440 InDels were informative for the construction of a genetic linkage map. Sixteen linkage groups were produced, spanning 2,737.6 cM for the maternal map and 4,571.6 cM for the paternal map, with average marker densities of one marker per 2.9 cM and one per 2.0 cM respectively, were produced. A QTL analysis was performed on nine traits; however, only QTL regions linked to M/F, K/F and S/F were declared to be significant. Of those QTLs were detected: two for M/F, four for K/F and one for S/F. These QTLs explained 18.1-25.6% of the phenotypic variance and were located near putative genes, such as casein kinase II and the zinc finger CCCH domain, which are involved in seed germination and growth. The identified QTL regions for M/F, K/F and S/F from this study could be applied in an oil palm breeding program and used to screen palms with desired traits via marker assisted selection (MAS).

    Matched MeSH terms: Genetic Linkage
  3. Yong HS, Lim PE, Tan J, Song SL, Suana IW, Eamsobhana P
    PLoS One, 2015;10(6):e0129455.
    PMID: 26090853 DOI: 10.1371/journal.pone.0129455
    Bactrocera caudata is a pest of pumpkin flower. Specimens of B. caudata from the northern hemisphere (mainland Asia) and southern hemisphere (Indonesia) were analysed using the partial DNA sequences of the nuclear 28S rRNA and internal transcribed spacer region 2 (ITS-2) genes, and the mitochondrial cytochrome c oxidase subunit I (COI), cytochrome c oxidase subunit II (COII) and 16S rRNA genes. The COI, COII, 16S rDNA and concatenated COI+COII+16S and COI+COII+16S+28S+ITS-2 nucleotide sequences revealed that B. caudata from the northern hemisphere (Peninsular Malaysia, East Malaysia, Thailand) was distinctly different from the southern hemisphere (Indonesia: Java, Bali and Lombok), without common haplotype between them. Phylogenetic analysis revealed two distinct clades (northern and southern hemispheres), indicating distinct genetic lineage. The uncorrected 'p' distance for the concatenated COI+COII+16S nucleotide sequences between the taxa from the northern and southern hemispheres ('p' = 4.46-4.94%) was several folds higher than the 'p' distance for the taxa in the northern hemisphere ('p' = 0.00-0.77%) and the southern hemisphere ('p' = 0.00%). This distinct difference was also reflected by concatenated COI+COII+16S+28S+ITS-2 nucleotide sequences with an uncorrected 'p' distance of 2.34-2.69% between the taxa of northern and southern hemispheres. In accordance with the type locality the Indonesian taxa belong to the nominal species. Thus the taxa from the northern hemisphere, if they were to constitute a cryptic species of the B. caudata species complex based on molecular data, need to be formally described as a new species. The Thailand and Malaysian B. caudata populations in the northern hemisphere showed distinct genetic structure and phylogeographic pattern.
    Matched MeSH terms: Genetic Linkage*
  4. Chan KL, Yushayati Y, Guaneswaran P
    Biochem Genet, 1991 Apr;29(3-4):203-6.
    PMID: 1830472
    Matched MeSH terms: Genetic Linkage*
  5. Gan ST, Wong WC, Wong CK, Soh AC, Kilian A, Low EL, et al.
    J Appl Genet, 2018 Feb;59(1):23-34.
    PMID: 29214520 DOI: 10.1007/s13353-017-0420-7
    Oil palm (Elaeis guineensis Jacq.) is an outbreeding perennial tree crop with long breeding cycles, typically 12 years. Molecular marker technologies can greatly improve the breeding efficiency of oil palm. This study reports the first use of the DArTseq platform to genotype two closely related self-pollinated oil palm populations, namely AA0768 and AA0769 with 48 and 58 progeny respectively. Genetic maps were constructed using the DArT and SNP markers generated in combination with anchor SSR markers. Both maps consisted of 16 major independent linkage groups (2n = 2× = 32) with 1399 and 1466 mapped markers for the AA0768 and AA0769 populations, respectively, including the morphological trait "shell-thickness" (Sh). The map lengths were 1873.7 and 1720.6 cM with an average marker density of 1.34 and 1.17 cM, respectively. The integrated map was 1803.1 cM long with 2066 mapped markers and average marker density of 0.87 cM. A total of 82% of the DArTseq marker sequence tags identified a single site in the published genome sequence, suggesting preferential targeting of gene-rich regions by DArTseq markers. Map integration of higher density focused around the Sh region identified closely linked markers to the Sh, with D.15322 marker 0.24 cM away from the morphological trait and 5071 bp from the transcriptional start of the published SHELL gene. Identification of the Sh marker demonstrates the robustness of using the DArTseq platform to generate high density genetic maps of oil palm with good genome coverage. Both genetic maps and integrated maps will be useful for quantitative trait loci analysis of important yield traits as well as potentially assisting the anchoring of genetic maps to genomic sequences.
    Matched MeSH terms: Genetic Linkage*
  6. Yu X, Megens HJ, Mengistu SB, Bastiaansen JWM, Mulder HA, Benzie JAH, et al.
    BMC Genomics, 2021 Jun 09;22(1):426.
    PMID: 34107887 DOI: 10.1186/s12864-021-07486-5
    BACKGROUND: Tilapia is one of the most abundant species in aquaculture. Hypoxia is known to depress growth rate, but the genetic mechanism by which this occurs is unknown. In this study, two groups consisting of 3140 fish that were raised in either aerated (normoxia) or non-aerated pond (nocturnal hypoxia). During grow out, fish were sampled five times to determine individual body weight (BW) gains. We applied a genome-wide association study to identify SNPs and genes associated with the hypoxic and normoxic environments in the 16th generation of a Genetically Improved Farmed Tilapia population.

    RESULTS: In the hypoxic environment, 36 SNPs associated with at least one of the five body weight measurements (BW1 till BW5), of which six, located between 19.48 Mb and 21.04 Mb on Linkage group (LG) 8, were significant for body weight in the early growth stage (BW1 to BW2). Further significant associations were found for BW in the later growth stage (BW3 to BW5), located on LG1 and LG8. Analysis of genes within the candidate genomic region suggested that MAPK and VEGF signalling were significantly involved in the later growth stage under the hypoxic environment. Well-known hypoxia-regulated genes such as igf1rb, rora, efna3 and aurk were also associated with growth in the later stage in the hypoxic environment. Conversely, 13 linkage groups containing 29 unique significant and suggestive SNPs were found across the whole growth period under the normoxic environment. A meta-analysis showed that 33 SNPs were significantly associated with BW across the two environments, indicating a shared effect independent of hypoxic or normoxic environment. Functional pathways were involved in nervous system development and organ growth in the early stage, and oocyte maturation in the later stage.

    CONCLUSIONS: There are clear genotype-growth associations in both normoxic and hypoxic environments, although genome architecture involved changed over the growing period, indicating a transition in metabolism along the way. The involvement of pathways important in hypoxia especially at the later growth stage indicates a genotype-by-environment interaction, in which MAPK and VEGF signalling are important components.

    Matched MeSH terms: Genetic Linkage
  7. Robledo-Ruiz DA, Gan HM, Kaur P, Dudchenko O, Weisz D, Khan R, et al.
    Gigascience, 2022 Mar 29;11.
    PMID: 35348671 DOI: 10.1093/gigascience/giac025
    BACKGROUND: The helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required.

    RESULTS: We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene.

    CONCLUSIONS: The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.

    Matched MeSH terms: Genetic Linkage
  8. Chow WZ, Nizam S, Ong LY, Ng KT, Chan KG, Takebe Y, et al.
    Genome Announc, 2014;2(2).
    PMID: 24675847 DOI: 10.1128/genomeA.00139-14
    A complex HIV-1 unique recombinant form involving subtypes CRF01_AE, B, and B' was recently identified from an injecting drug user in Malaysia. A total of 13 recombination breakpoints were mapped across the near-full-length genome of isolate 10MYPR226, indicating the increasingly diverse molecular epidemiology and frequent linkage among various high-risk groups.
    Matched MeSH terms: Genetic Linkage
  9. Chan KW, Tan GH, Wong RC
    J Forensic Sci, 2013 Jan;58 Suppl 1:S199-207.
    PMID: 23013257 DOI: 10.1111/j.1556-4029.2012.02285.x
    Statistical validation is crucial for the clustering of unknown samples. This study aims to demonstrate how statistical techniques can be optimized using simulated heroin samples containing a range of analyte concentrations that are similar to those of the case samples. Eight simulated heroin distribution links consisting of 64 postcut samples were prepared by mixing one of two mixtures of paracetamol-caffeine-dextromethorphan at different proportions with eight precut samples. Analyte contents and compositional variation of the prepared samples were investigated. A number of data pretreatments were evaluated by associating the postcut samples with the corresponding precut samples using principal component analysis and discriminant analysis. Subsequently, combinations of seven linkage methods and five distance measures were explored using hierarchical cluster analysis. In this study, Ward-Manhattan showed better distinctions between unrelated links and was able to cluster all related samples in very close distance under the known links on a dendogram. A similar discriminative outcome was also achieved by 90 unknown case samples when clustered via Ward-Manhattan.
    Matched MeSH terms: Genetic Linkage
  10. Halim AS, Emami A, Salahshourifar I, Kannan TP
    Arch Plast Surg, 2012 May;39(3):184-9.
    PMID: 22783524 DOI: 10.5999/aps.2012.39.3.184
    Keloid disease is a fibroproliferative dermal tumor with an unknown etiology that occurs after a skin injury in genetically susceptible individuals. Increased familial aggregation, a higher prevalence in certain races, parallelism in identical twins, and alteration in gene expression all favor a remarkable genetic contribution to keloid pathology. It seems that the environment triggers the disease in genetically susceptible individuals. Several genes have been implicated in the etiology of keloid disease, but no single gene mutation has thus far been found to be responsible. Therefore, a combination of methods such as association, gene-gene interaction, epigenetics, linkage, gene expression, and protein analysis should be applied to determine keloid etiology.
    Matched MeSH terms: Genetic Linkage
  11. Cheong HT, Ng KT, Ong LY, Takebe Y, Chan KG, Koh C, et al.
    Genome Announc, 2015;3(6).
    PMID: 26543107 DOI: 10.1128/genomeA.01220-15
    Three strains of HIV-1 unique recombinant forms (URFs) descended from subtypes B, B', and CRF01_AE were identified among people who inject drugs in Kuala Lumpur, Malaysia. These three URFs shared a common recombination breakpoint in the reverse transcriptase region, indicating frequent linkage within the drug-injecting networks in Malaysia.
    Matched MeSH terms: Genetic Linkage
  12. Leela Anthony, Nagarajah Lee, Stephen Ambu, Lokman Hakim S.
    MyJurnal
    This study examined the trend of major congenital anomalies (CA) in the state of Penang using the ICD 10 database from 1999 to 2004. The data was collected from various health centres and hospitals. The aim was to study the magnitude of the problem for congenital anomalies in the state of Penang in terms of trends and also to calculate the incidence rate by districts. If a trend was noticed, this in turn will determine whether to carry out further in-depth studies in the future and to find out the linkages to the environment if any.
    Matched MeSH terms: Genetic Linkage
  13. Ho WK, Chai HH, Kendabie P, Ahmad NS, Jani J, Massawe F, et al.
    BMC Genomics, 2017 02 20;18(1):192.
    PMID: 28219341 DOI: 10.1186/s12864-016-3393-8
    BACKGROUND: Bambara groundnut [Vigna subterranea (L) Verdc.] is an indigenous legume crop grown mainly in subsistence and small-scale agriculture in sub-Saharan Africa for its nutritious seeds and its tolerance to drought and poor soils. Given that the lack of ex ante sequence is often a bottleneck in marker-assisted crop breeding for minor and underutilised crops, we demonstrate the use of limited genetic information and resources developed within species, but linked to the well characterised common bean (Phaseolus vulgaris) genome sequence and the partially annotated closely related species; adzuki bean (Vigna angularis) and mung bean (Vigna radiata). From these comparisons we identify conserved synteny blocks corresponding to the Linkage Groups (LGs) in bambara groundnut genetic maps and evaluate the potential to identify genes in conserved syntenic locations in a sequenced genome that underlie a QTL position in the underutilised crop genome.

    RESULTS: Two individual intraspecific linkage maps consisting of DArTseq markers were constructed in two bambara groundnut (2n = 2x = 22) segregating populations: 1) The genetic map of Population IA was derived from F2lines (n = 263; IITA686 x Ankpa4) and covered 1,395.2 cM across 11 linkage groups; 2) The genetic map of Population TD was derived from F3lines (n = 71; Tiga Nicuru x DipC) and covered 1,376.7 cM across 11 linkage groups. A total of 96 DArTseq markers from an initial pool of 142 pre-selected common markers were used. These were not only polymorphic in both populations but also each marker could be located using the unique sequence tag (at selected stringency) onto the common bean, adzuki bean and mung bean genomes, thus allowing the sequenced genomes to be used as an initial 'pseudo' physical map for bambara groundnut. A good correspondence was observed at the macro synteny level, particularly to the common bean genome. A test using the QTL location of an agronomic trait in one of the bambara groundnut maps allowed the corresponding flanking positions to be identified in common bean, mung bean and adzuki bean, demonstrating the possibility of identifying potential candidate genes underlying traits of interest through the conserved syntenic physical location of QTL in the well annotated genomes of closely related species.

    CONCLUSIONS: The approach of adding pre-selected common markers in both populations before genetic map construction has provided a translational framework for potential identification of candidate genes underlying a QTL of trait of interest in bambara groundnut by linking the positions of known genetic effects within the underutilised species to the physical maps of other well-annotated legume species, without the need for an existing whole genome sequence of the study species. Identifying the conserved synteny between underutilised species without complete genome sequences and the genomes of major crops and model species with genetic and trait data is an important step in the translation of resources and information from major crop and model species into the minor crop species. Such minor crops will be required to play an important role in future agriculture under the effects of climate change.

    Matched MeSH terms: Genetic Linkage
  14. Mohd Sanusi NSN, Rosli R, Chan KL, Halim MAA, Ting NC, Singh R, et al.
    Comput Biol Chem, 2023 Feb;102:107801.
    PMID: 36528019 DOI: 10.1016/j.compbiolchem.2022.107801
    A high-quality reference genome is an important resource that can help decipher the genetic basis of traits in combination with linkage or association analyses. The publicly available oil palm draft genome sequence of AVROS pisifera (EG5) accounts for 1.535 Gb of the 1.8 Gb oil palm genome. However, the assemblies are fragmented, and the earlier assembly only had 43% of the sequences placed on pseudo-chromosomes. By integrating a number of SNP and SSR-based genetic maps, a consensus map (AM_EG5.1), comprising of 828.243 Mb genomic scaffolds anchored to 16 pseudo-chromosomes, was generated. This accounted for 54% of the genome assembly, which is a significant improvement to the original assembly. The total length of N50 scaffolds anchored to the pseudo-chromosomes increased by ∼18% compared to the previous assembly. A total of 139 quantitative trait loci for agronomically important quantitative traits, sourced from literature, were successfully mapped on the new pseudo-chromosomes. The improved assembly could also be used as a reference to identify potential errors in placement of specific markers in the linkage groups of the genetic maps used to assemble the consensus map. The 3422 unique markers from five genetic maps, anchored to the pseudo-chromosomes of AM_EG5.1, are an important resource that can be used preferentially to either construct new maps or fill gaps in existing genetic maps. Synteny analysis further revealed that the AM_EG5.1 had high collinearity with the date palm genome cultivar 'Barhee BC4' and shared most of its segmental duplications. This improved chromosomal-level genome is a valuable resource for genetic research in oil palm.
    Matched MeSH terms: Genetic Linkage
  15. Keong BP, Siraj SS, Daud SK, Panandam JM, Rahman AN
    Gene, 2014 Feb 15;536(1):114-7.
    PMID: 24333858 DOI: 10.1016/j.gene.2013.11.068
    A preliminary linkage map was constructed by applying backcross and testcross strategy using microsatellite (SSR) markers developed for Xiphophorus and Poecilia reticulata in ornamental fish, molly Poecilia sp. The linkage map having 18 SSR loci consisted of four linkage groups that spanned a map size of 516.1cM. Association between genotypes and phenotypes was tested in a random fashion and QTL for dorsal fin length was found to be linked to locus Msb069 on linkage group 2. Coincidentally, locus Msb069 was also reported as putative homologue primer pairs containing SSRs repeat motif which encoded hSMP-1, a sex determining locus. Dorsal fin length particularly in males of Poecilia latipinna is an important feature during courtship display. Therefore, we speculate that both dorsal fin length and putative hSMP-1 gene formed a close proximity to male sexual characteristics.
    Matched MeSH terms: Genetic Linkage*
  16. Seng TY, Mohamed Saad SH, Chin CW, Ting NC, Harminder Singh RS, Qamaruz Zaman F, et al.
    PLoS One, 2011;6(11):e26593.
    PMID: 22069457 DOI: 10.1371/journal.pone.0026593
    Enroute to mapping QTLs for yield components in oil palm, we constructed the linkage map of a FELDA high yielding oil palm (Elaeis guineensis), hybrid cross. The parents of the mapping population are a Deli dura and a pisifera of Yangambi origin. The cross out-yielded the average by 8-21% in four trials all of which yielded comparably to the best current commercial planting materials. The higher yield derived from a higher fruit oil content. SSR markers in the public domain - from CIRAD and MPOB, as well as some developed in FELDA - were used for the mapping, augmented by locally-designed AFLP markers. The female parent linkage map comprised 317 marker loci and the male parent map 331 loci, both in 16 linkage groups each. The number of markers per group ranged from 8-47 in the former and 12-40 in the latter. The integrated map was 2,247.5 cM long and included 479 markers and 168 anchor points. The number of markers per linkage group was 15-57, the average being 29, and the average map density 4.7 cM. The linkage groups ranged in length from 77.5 cM to 223.7 cM, with an average of 137 cM. The map is currently being validated against a closely related population and also being expanded to include yield related QTLs.
    Matched MeSH terms: Genetic Linkage/genetics*
  17. Farah WI, Aminuddin BS, Ruszymah BH
    Malays J Pathol, 2006 Jun;28(1):23-33.
    PMID: 17694956 MyJurnal
    Hearing loss is a common sensory deficit in humans. The hearing loss may be conductive, sensorineural, or mixed, syndromic or nonsyndromic, prelingual or postlingual. Due to the complexity of the hearing mechanism, it is not surprising that several hundred genes might be involved in causing hereditary hearing loss. There are at least 82 chromosomal loci that have been identified so far which are associated with the most common type of deafness--non-syndromic deafness. However, there are still many more which remained to be discovered. Here, we report the mapping of a locus for autosomal recessive, non-syndromic deafness in a family in Malaysia. The investigated family (AC) consists of three generations--parents who are deceased, nine affected and seven unaffected children and grandchildren. The deafness was deduced to be inherited in an autosomal recessive manner with 70% penetrance. Recombination frequencies were assumed to be equal for both males and females. Using two-point lod score analysis (MLINK), a maximum lod score of 2.48 at 0% recombinant (Z = 2.48, theta = 0%) was obtained for the interval D14S63-D14S74. The haplotype analysis defined a 14.38 centiMorgan critical region around marker D14S258 on chromosome 14q23.2-q24.3. There are 16 candidate genes identified with positive expression in human cochlear and each has great potential of being the deaf gene responsible in causing non-syndromic hereditary hearing loss in this particular family. Hopefully, by understanding the role of genetics in deafness, early interventional strategies can be undertaken to improve the life of the deaf community.
    Matched MeSH terms: Genetic Linkage*
  18. Noh LM, Ismail Z, Zainudin BM, Low SM, Azizi BH, Noah RM, et al.
    Acta Paediatr Jpn, 1995 Jun;37(3):331-5.
    PMID: 7645382
    X linked agammaglobulinemia (XLA) is rarely reported from developing countries especially from South East Asia. It appears that X linked agammaglobulinemia is less common in certain ethnic groups. It is very uncommon in black people in USA and South Africa. In multiracial Malaysia we have documented five XLA in Malays and Indians but not in the Chinese that constitute about 31% of the population. First degree relatives afflicted with XLA or other primary immunodeficiencies occurred more often in our study. All showed lung involvement although the etiologic organisms involved were atypical, being Gram negative.
    Matched MeSH terms: Genetic Linkage*
  19. Taslima K, Wehner S, Taggart JB, de Verdal H, Benzie JAH, Bekaert M, et al.
    BMC Genet, 2020 04 29;21(1):49.
    PMID: 32349678 DOI: 10.1186/s12863-020-00853-3
    BACKGROUND: Tilapias (Family Cichlidae) are the second most important group of aquaculture species in the world. They have been the subject of much research on sex determination due to problems caused by early maturation in culture and their complex sex-determining systems. Different sex-determining loci (linkage group 1, 20 and 23) have been detected in various tilapia stocks. The 'genetically improved farmed tilapia' (GIFT) stock, founded from multiple Nile tilapia (Oreochromis niloticus) populations, with some likely to have been introgressed with O. mossambicus, is a key resource for tilapia aquaculture. The sex-determining mechanism in the GIFT stock was unknown, but potentially complicated due to its multiple origins.

    RESULTS: A bulk segregant analysis (BSA) version of double-digest restriction-site associated DNA sequencing (BSA-ddRADseq) was developed and used to detect and position sex-linked single nucleotide polymorphism (SNP) markers in 19 families from the GIFT strain breeding nucleus and two Stirling families as controls (a single XY locus had been previously mapped to LG1 in the latter). About 1500 SNPs per family were detected across the genome. Phenotypic sex in Stirling families showed strong association with LG1, whereas only SNPs located in LG23 showed clear association with sex in the majority of the GIFT families. No other genomic regions linked to sex determination were apparent. This region was validated using a series of LG23-specific DNA markers (five SNPs with highest association to sex from this study, the LG23 sex-associated microsatellite UNH898 and ARO172, and the recently isolated amhy marker for individual fish (n = 284).

    CONCLUSIONS: Perhaps surprisingly given its multiple origins, sex determination in the GIFT strain breeding nucleus was associated only with a locus in LG23. BSA-ddRADseq allowed cost-effective analysis of multiple families, strengthening this conclusion. This technique has potential to be applied to other complex traits. The sex-linked SNP markers identified will be useful for potential marker-assisted selection (MAS) to control sex-ratio in GIFT tilapia to suppress unwanted reproduction during growout.

    Matched MeSH terms: Genetic Linkage*
  20. Ferdig MT, Taft AS, Severson DW, Christensen BM
    Genome Res, 1998 Jan;8(1):41-7.
    PMID: 9445486
    One of the causative agents of lympahtic filariasis is the nematode parasite Brugia malayi that requires a competent mosquito vector for its development and transmission. Armigeres subalbatus mosquitoes rapidly destroy invading B. malayi microfilariae via a defense response known as melanotic encapsulation. We have constructed a genetic linkage map for this mosquito species using RFLP markers from Aedes aegypti. This heterologous approach was possible because of the conserved nature of the coding sequences used as markers and provided an experimental framework to evaluate the hypothesis that linkage and gene order are conserved between these mosquito species. Of the 56 Ae. aegypti markers tested, 77% hybridize to genomic DNA digests of Ar. subalbatus under stringent conditions, with 53% of these demonstrating strain-specific polymorphisms. Twenty-six Ae. aegypti markers have been mapped using an F2- segregating Ar. subalbatus population derived from a cross of strains originating in Japan and Malaysia. Linear order of these marker loci is highly conserved between the two species. Only 1 of these markers, LF92, was not linked in the manner predicted by the Ae. aegypti map. In addition, the autosomal sex-determination locus that occurs in linkage group 1 in Ae. aegypti resides in group 3 in Ar. subalbatus. The Ar. subalbatus map provides a basic genetic context that can be utilized in further genetic studies to clarify the genetic basis of parasite resistance in this mosquito and is a necessary precursor to the identification of genome regions that carry genes that determine the encapsulation phenotype. [The composite map and sequence database information for Ae. aegypti markers can be retrieved directly from the Ae. aegypti Genome Database through the World Wide Web: http://klab.agsci.colostate.edu.]
    Matched MeSH terms: Genetic Linkage*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links