Displaying publications 1 - 20 of 91 in total

Abstract:
Sort:
  1. Yii MW, Zaharudin A, Abdul-Kadir I
    Appl Radiat Isot, 2009 Apr;67(4):630-5.
    PMID: 19168367 DOI: 10.1016/j.apradiso.2008.11.019
    Studies of naturally occurring radioactive materials (NORM) distribution of (226)Ra, (228)Ra and (40)K in East Malaysia were carried out as part of a marine coastal environment project. The results of measurements will serve as baseline data and background reference level for Malaysia coastlines. Sediments from 21 coastal locations and 10 near shore locations were collected for analyses. The samples were dried, finely ground, sealed in a container and stored for a minimum of 30 days to establish secular equilibrium between (226)Ra and (228)Ra and their respective radioactive progenies. They were counted using a high-purity germanium (HPGe) spectrometer covering the respective progeny energy peak. For (40)K, the presence of this was measured directly via its 1460 keV energy peak. The concentration of (226)Ra, (228)Ra and (40)K in samples obtained from coastal Sarawak ranged between 23 and 41 (mean 30+/-2) Bq/kg, 27 and 45 (mean 39+/-4) Bq/kg and 142 and 680 (mean 462+/-59) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from coastal Sabah ranged between 16 and 30 (mean 23+/-2) Bq/kg, 23 and 45 (mean 35+/-4) Bq/kg and 402 and 842 (mean 577+/-75) Bq/kg, respectively. For the Sarawak near shore stations, the concentration of (226)Ra, (228)Ra and (40)K ranged between 11 and 36 (mean 22+/-2) Bq/kg, 21 and 65 (mean 39+/-5) Bq/kg and 149 and 517 (mean 309+/-41) Bq/kg, respectively. Meanwhile, the concentration of (226)Ra, (228)Ra and (40)K for samples obtained from Sabah ranged between 9 and 31 (mean 14+/-2) Bq/kg, 10 and 48 (mean 21+/-3) Bq/kg and 140 and 580 (mean 269+/-36) Bq/kg, respectively. The calculated external hazard values of between 0.17 and 0.33 (less than unity) showed that there is little risk of external hazard to the workers handling the sediments.
    Matched MeSH terms: Geologic Sediments/chemistry*
  2. Nagarajan R, Eswaramoorthi SG, Anandkumar A, Ramkumar M
    Mar Pollut Bull, 2023 Jul;192:115090.
    PMID: 37263028 DOI: 10.1016/j.marpolbul.2023.115090
    Miri River is a tropical river in Borneo that drains on flat terrain and urbanised area and debauches into the South China Sea. This paper documents the environmental status of this river, and provides an insight into the provenance using bulk chemistry of the sediments, and brings out the geochemical mobility, bioavailability, and potential toxicity of some critical elements based on BCR sequential extraction. The sediments are intense to moderately weathered and recycled products of Neogene sedimentary rocks. The hydrodynamic characteristics of the river favoured an upstream section dominated by fine sand, while the downstream sediments are medium silt. Based on the bulk geochemistry, the Miri River sediments are moderate to considerably contaminated by Cu, Mo, and As in the upstream and by Sb, As and Cu in the downstream. The potential ecological risk values are low except Cu and a significant biological impact is expected in downstream due to Cu, As, Zn and Cr. The mobility, bioavailability and Risk Assessment Code values for Zn and Mn are higher and thus may pose moderate to very high risk to aquatic organisms. Though a high bulk concentration of Cu is observed, the association of Cu with the bioavailable fraction is low.
    Matched MeSH terms: Geologic Sediments/chemistry
  3. Bong CH, Lau TL, Ghani AA
    Water Sci Technol, 2013;67(2):395-403.
    PMID: 23168641 DOI: 10.2166/wst.2012.580
    The current study aims to verify the existing equations for incipient motion for a rigid rectangular channel. Data from experimental work on incipient motion from a rectangular flume with two different widths, namely 0.3 and 0.6 m, were compared with the critical velocity value predicted by the equations of Novak & Nalluri and El-Zaemey. The equation by El-Zaemey performed better with an average discrepancy ratio value of 1.06 compared with the equation by Novak & Nalluri with an average discrepancy ratio value of 0.87. However, as the sediment deposit thickness increased, the equation by El-Zaemey became less accurate. A plot on the Shields Diagram using the experimental data had shown the significant effect of the sediment deposit thickness where, as the deposit becomes thicker, the dimensionless shear stress θ value also increased. A new equation had been proposed by incorporating the sediment deposit thickness. The new equation gave improved prediction with an average discrepancy ratio value of 1.02.
    Matched MeSH terms: Geologic Sediments/chemistry*
  4. Prabakaran K, Nagarajan R, Eswaramoorthi S, Anandkumar A, Franco FM
    Chemosphere, 2019 Mar;219:933-953.
    PMID: 30572242 DOI: 10.1016/j.chemosphere.2018.11.158
    The geochemistry and distribution of major, trace and rare earth elements (REE's) was studied in the surface sediments of the Lower Baram River during two seasons: the Monsoon (MON) and Post - monsoon (POM). The major geochemical processes controlling the distribution and mobility of major, trace and REE's in the Lower Baram River surface sediments was revealed through factor analysis. The risk assessment of major and trace element levels was studied at three specific levels; i.e. the enrichment level [Contamination Factor (Cf), with the geo-accumulation index (Igeo)], the availability level [metals bound to different fractions, risk assessment code (RAC)], and the biological toxicity level [effect range low (ERL) and effect range medium (ERM)]. The results of all the indices indicate that Cu is the element of concern in the Lower Baram River sediments. The geochemical fractionation of major and trace elements were studied through sequential extraction and the results indicated a higher concentration of Mn in the exchangeable fraction. The element of concern, Cu, was found to be highly associated in the organic bound (F4) fraction during both seasons and a change in the redox, possibly due to storms or dredging activities may stimulate the release of Cu into the overlying waters of the Lower Baram River.
    Matched MeSH terms: Geologic Sediments/chemistry*
  5. Looi LJ, Aris AZ, Yusoff FM, Hashim Z
    Environ Monit Assess, 2015 Jan;187(1):4099.
    PMID: 25380712 DOI: 10.1007/s10661-014-4099-5
    Sediment is a great indicator for assessing coastal mercury contamination. This work profiled the magnitude of mercury pollution in the tropical estuaries and coastal sediments of the Strait of Malacca. Mercury was extracted through the ultrasound-assisted mercury extraction method and analyzed using the flow injection mercury system. The mean concentration of mercury in the sediment samples was 61.43 ± 23.25 μg/kg, ranging from 16.55 ± 0.61 to 114.02 ± 1.54 μg/kg. Geoaccumulation index revealed that a total of 13% of sampling sites were moderately enriched with mercury. The northern part of the Strait of Malacca had the highest mean mercury (Hg) concentration (76.36 ± 27.25 μg/kg), followed by the southern (64.59 ± 16.09 μg/kg) and central (39.33 ± 12.91 μg/kg) parts. Sediment mercury concentration in the current study was lower than other regions like Japan, China, Indian, east Mediterranean, and Taiwan. When compared to the Canadian interim marine and freshwater sediment, China's soil interim environmental guidelines, mercury contamination in the Strait of Malacca was found to be below these permissible limits. Sediment organic matter content was found to have significant correlation with sediment mercury concentration. This study could provide the latest benchmark of mercury pollution and prove beneficial to future pollution studies in relation to monitoring works in tropical estuaries and coastal sediments.
    Matched MeSH terms: Geologic Sediments/chemistry*
  6. Adiana G, Shazili NA, Marinah MA, Bidai J
    Environ Monit Assess, 2014 Jan;186(1):421-31.
    PMID: 23974537 DOI: 10.1007/s10661-013-3387-9
    Concentrations of trace metals in the South China Sea (SCS) were determined off the coast of Terengganu during the months of May and November 2007. The concentrations of dissolved and particulate metals were in the range of 0.019-0.194 μg/L and 50-365 μg/g, respectively, for cadmium (Cd), 0.05-0.45 μg/L and 38-3,570 μg/g for chromium (Cr), 0.05-3.54 μg/L and 21-1,947 μg/g for manganese (Mn), and 0.03-0.49 μg/L and 2-56,982 μg/g for lead (Pb). The order of mean log K D found was Cd > Cr > Pb > Mn. The study suggests that the primary sources of these metals are discharges from the rivers which drain into the SCS, in particular the Dungun River, which flows in close proximity to agricultural areas and petrochemical industries. During the northeast monsoon, levels of particulate metals in the bottom water samples near the shore were found to be much higher than during the dry season, the probable result of re-suspension of the metals from the bottom sediments.
    Matched MeSH terms: Geologic Sediments/chemistry
  7. Nagarajan R, Jonathan MP, Roy PD, Wai-Hwa L, Prasanna MV, Sarkar SK, et al.
    Mar Pollut Bull, 2013 Aug 15;73(1):369-73.
    PMID: 23790448 DOI: 10.1016/j.marpolbul.2013.05.036
    Forty-three sediment samples were collected from the beaches of Miri City, Sarawak, Malaysia to identify the enrichment of partially leached trace metals (PLTMs) from six different tourist beaches. The samples were analyzed for PLTMs Fe, Mn, Cr, Co, Cu, Ni, Pb, Sr and Zn. The concentration pattern suggest that the southern side of the study area is enriched with Fe (1821-6097 μg g(-1)), Mn (11.57-90.22 μg g(-1)), Cr (51.50-311 μg g(-1)), Ni (18-51 μg g(-1)), Pb (8.81-84.05 μg g(-1)), Sr (25.95-140.49 μg g(-1)) and Zn (12.46-35.04 μg g(-1)). Compared to the eco-toxicological values, Cr>Effects range low (ERL), Lowest effect level (LEL), Severe effect level (SEL); Cu>Unpolluted sediments, ERL, LEL; Pb>Unpolluted sediments and Ni>ERL and LEL. Comparative results with other regions indicate that Co, Cr, Cu, Ni and Zn are higher, indicating an external input rather than natural process.
    Matched MeSH terms: Geologic Sediments/chemistry*
  8. Nemati K, Abu Bakar NK, Abas MR, Sobhanzadeh E
    J Hazard Mater, 2011 Aug 15;192(1):402-10.
    PMID: 21684080 DOI: 10.1016/j.jhazmat.2011.05.039
    The sequential extraction procedure proposed by the European Standard, Measurements and Testing (SM&T) program, formerly the Community Bureau of Reference (BCR), was applied for partitioning of heavy metals (HMs) in river sediments collected along the course of Sungai Buloh and the Straits of Malacca in Selangor, Malaysia. Eight elements (V, Pb, Cd, Cr, Co, Ni, Cu and Zn) from seven stations (S1-S7) and at different depths were analyzed using the modified BCR Sequential Extraction Procedure (SEP) in combination with ICP-MS to obtain the metal distribution patterns in this region. The results showed that heavy metal contaminations at S2 and S3 was more severe than at other sampling sites, especially for Zn, Cu, Ni and Pb. Nevertheless, the element concentrations from top to bottom layers decreased predominantly. The samples from the Straits of Malacca (S4-S7) the highest contamination factors obtained were for Co, Zn and Pb while the lowest were found for V and Cr, similar to Sungai Buloh sediments. The sediments showed a low risk for V, Cr, Cu and Pb with RAC values of less than 10%, but medium risk for Co, Zn (except S3), Cd at S1 and S2 and Ni at S1, S3 and S5. Zn at S3 and Cd at S3-S7 showed high risk to our sediment samples. There is not any element of very high risk conditions in the selected samples.
    Matched MeSH terms: Geologic Sediments/chemistry*
  9. Sohrabi T, Ismail A, Nabavi MB
    Bull Environ Contam Toxicol, 2010 Nov;85(5):502-8.
    PMID: 20957347 DOI: 10.1007/s00128-010-0112-z
    Surface sediments along the south of Caspian Sea were collected to evaluate the contamination of heavy metals. The result ranged (μg/g, Fe% dw): Pb(13.06-33.48); Ni(18.01-69.63); Cd(0.62-1.5); Zn(30.11-87.88); Cu(5.86-26.37) and Fe(1.8-4%) respectively. Cadmium showed higher EF when compared to other sites. Geoaccumulation Index value for Cd in most stations was classified as moderately contaminated and moderately to strongly contaminated, as well as the average of I(geo) of Cd (1.77 ± 0.35) suggested that surface sediments of Caspian coast were moderately polluted by this metal. The result of the Pearson correlation showed that there were significant positive associations between Ni, Cd and Zn (r = 0.44-0.76; p < 0.01).
    Matched MeSH terms: Geologic Sediments/chemistry*
  10. Zakaria NA, Azamathulla HM, Chang CK, Ghani AA
    Sci Total Environ, 2010 Oct 1;408(21):5078-85.
    PMID: 20708217 DOI: 10.1016/j.scitotenv.2010.07.048
    This paper presents Gene-Expression Programming (GEP), which is an extension to the genetic programming (GP) approach to predict the total bed material load for three Malaysian rivers. The GEP is employed without any restriction to an extensive database compiled from measurements in the Muda, Langat, and Kurau rivers. The GEP approach demonstrated a superior performance compared to other traditional sediment load methods. The coefficient of determination, R(2) (=0.97) and the mean square error, MSE (=0.057) of the GEP method are higher than those of the traditional method. The performance of the GEP method demonstrates its predictive capability and the possibility of the generalization of the model to nonlinear problems for river engineering applications.
    Matched MeSH terms: Geologic Sediments/chemistry*
  11. Zulkifli SZ, Ismail A, Mohamat-Yusuff F, Arai T, Miyazaki N
    Bull Environ Contam Toxicol, 2010 May;84(5):568-73.
    PMID: 20411236 DOI: 10.1007/s00128-010-9998-8
    Present study was conducted to evaluate current status of trace elements contamination in the surface sediments of the Johor Strait. Iron (2.54 +/- 1.24%) was found as the highest occurring element, followed by those of zinc (210.45 +/- 115.4 microg/g), copper (57.84 +/- 45.54 microg/g), chromium (55.50 +/- 31.24 microg/g), lead (52.52 +/- 28.41 microg/g), vanadium (47.76 +/- 25.76 microg/g), arsenic (27.30 +/- 17.11 microg/g), nickel (18.31 +/- 11.77 microg/g), cobalt (5.13 +/- 3.12 microg/g), uranium (4.72 +/- 2.52 microg/g), and cadmium (0.30 +/- 0.30 microg/g), respectively. Bioavailability of cobalt, nickel, copper, zinc, arsenic and cadmium were higher than 50% of total concentration. Vanadium, copper, zinc, arsenic and cadmium were found significantly different between the eastern and western part of the strait (p < 0.05). Combining with other factors, Johor Strait is suitable as a hotspot for trace elements contamination related studies.
    Matched MeSH terms: Geologic Sediments/chemistry*
  12. Wu YL, Wang XH, Li YY, Hong HS, Li HY, Yin MD
    Huan Jing Ke Xue, 2009 Sep 15;30(9):2512-9.
    PMID: 19927796
    Polycyclic aromatic hydrocarbons (PAHs) in a sediment core collected from Langkawi Island of the Andaman Sea, Malaysia were determined by GC/MS, the vertical variations of concentration and distributions of PAHs were investigated. In combining with 210Pb-dating, the PAHs sedimentary record in the last 100 years was reconstructed and their possible sources were also discussed. The sigmaPAH concentration ranged from 13.2-60.1 ng x g(-1) in the whole sedimentary section (0-56 cm) with the dominant compounds of phenanthrene, naphthalene and perylene. The sediments contaminated to a lesser extent comparing with the surrounding waters. Before the 1920s, the concentrations of PAHs were considered to be the background level, which was implied from the natural inputs. The historical records of PAHs in the core showed that two distinct peaks which represented the input time of 1960s and 1980s, respectively, inferred that there were some relatively dramatically land-based inputs, and human activities leaded a clear impact to these waters during these periods. Furthermore, PAHs diagnostic ratios indicated that PAHs in the core sediments were mainly of pyrolytic origin (combustion), accompanied with minor petroleum origin. These were related with agriculture, industry, ocean import and export, and shipping activities in the surrounding regions. Meanwhile as the vital communication line, the marine transportation of the Strait of Malacca had influenced the environmental quality of the Andaman Sea. Meanwhile, based on the sedimentary record, PAHs concentrations were found to correlate positively with humanism activities and socioeconomic development (Gross Domestic Production) in the surrounding regions.
    Matched MeSH terms: Geologic Sediments/chemistry*
  13. Amin B, Ismail A, Arshad A, Yap CK, Kamarudin MS
    Environ Monit Assess, 2009 Jan;148(1-4):291-305.
    PMID: 18274874 DOI: 10.1007/s10661-008-0159-z
    Concentrations of Cd, Cu, Pb, Zn, Ni and Fe were determined in the surface sediments to investigate the distributions, concentrations and the pollution status of heavy metals in Dumai coastal waters. Sediment samples from 23 stations, representing 5 different site groups of eastern, central and western Dumai and southern and northern Rupat Island, were collected in May 2005. The results showed that heavy metal concentrations (in microg/g dry weight; Fe in %) were 0.88 (0.46-1.89); 6.08 (1.61-13.84); 32.34 (14.63-84.90); 53.89 (31.49-87.11); 11.48 (7.26-19.97) and 3.01 (2.10-3.92) for Cd, Cu, Pb, Zn, Ni and Fe, respectively. Generally, metal concentrations in the coastal sediments near Dumai city center (eastern and central Dumai) which have more anthropogenic activities were higher than those at other stations. Average concentration of Cd in the eastern Dumai was slightly higher than effective range low (ERL) but still below effective range medium (ERM) value established by Long et al. (Environmental Management 19(1):81-97, 1995; Environmental Toxicology Chemistry 17(4):714-727, 1997). All other metals were still below ERL and ERM. Calculated enrichment factor (EF), especially for Cd and Pb, and the Pollution load index (PLI) value in the eastern Dumai were also higher than other sites. Cd showed higher EF when compared to other metals. Geo-accumulation indices (I(geo)) in most of the stations (all site groups) were categorized as class 1 (unpolluted to moderately polluted environment) and only Cd in Cargo Port was in class 2 (moderately polluted). Heavy metal concentrations found in the present study were comparable to other regions of the world and based on the calculated indices it can be classified as unpolluted to moderately polluted coastal environment.
    Matched MeSH terms: Geologic Sediments/chemistry*
  14. Lin C, Lee CJ, Mao WM, Nadim F
    J Hazard Mater, 2009 Jan 15;161(1):270-5.
    PMID: 18456397 DOI: 10.1016/j.jhazmat.2008.03.082
    Sediment samples were analyzed for di-(2-ethylhexyl) phthalate (DEHP), an organic endocrine disruptor, in Houjing River in southern Taiwan. The average DEHP concentration at 10 sampling locations, spanning from upper, middle, and lower segments of the stream, was calculated at 3.81+/-6.36mgkg(-1)drywt. Highest concentration was recorded at the Jhongsing Bridge (20.22mgkg(-1)drywt.) near the Dashe Industrial Park, followed by the Renwu Bridge (8.93mgkg(-1)drywt.) near the Renwu Industrial Park. The surface sediment concentration of DEHP was found to be higher in the dry season (October and December), and lower in the wet (flood) season (August), indicating that sources of DEHP remained active and continued to recharge the Houjing River. Vertical sediment core analysis revealed that highest concentration occurred at the depth of 40-60cm, indicating that historical discharges of DEPH may have been higher than recent years. Domestic comparison of DEHP concentrations in sediment from highest to lowest could be categorized as northern, southern, central, and eastern Taiwan, respectively, and seemed to be positively correlated with population density and/or industrial activity. Compared to other countries, DEHP concentration of the Houjing River was relatively higher than rivers studied in Japan, Germany, Italy, and Malaysia, and was relatively lower than the Aire and Trent Rivers in the United Kingdom.
    Matched MeSH terms: Geologic Sediments/chemistry*
  15. Ebrahimpour M, Mushrifah I
    Environ Monit Assess, 2008 Jun;141(1-3):297-307.
    PMID: 17891467
    The purpose of this paper are to determine the concentration of heavy metals namely cadmium (Cd), copper (Cu) and lead (Pb) in water and sediment; and to investigate the effect of sediment pH and sediment organic matter on concentration of cadmium, copper and lead in sediment at oxidation fraction. For this purpose the concentration of heavy metals were measured in water and sediments at 15 sites from Tasik Chini, Peninsular Malaysia. The sequential extraction procedure used in this study was based on defined fractions: exchangeable, acid reduction, oxidation, and residual. The concentration of heavy metals in residual fraction was higher than the other fractions. Among the non-residual fractions, the concentration of heavy metals in organic matter fraction was much higher than other fractions collected from all sampling sites. The pH of the sediment in all sites was acidic. The mean pH ranges from 4.8 to 5.5 with the higher value observed at site 15. Results of organic matter analysis showed that the percentage of organic matter present in sediment samples varies throughout the lake and all sites of sediments were relatively rich in organic matter ranging from 13.0% to 34.2%. The highest mean percentage of organic matter was measured at sampling site 15, with value of 31.78%.
    Matched MeSH terms: Geologic Sediments/chemistry*
  16. Shuhaimi-Othman M, Pascoe D, Borgmann U, Norwood WP
    Environ Monit Assess, 2006 Jun;117(1-3):27-44.
    PMID: 16917696
    Hyalella azteca (Crustacea: Amphipoda), water and sediments from 12 circum-neutral lakes between Sudbury and North Bay in Ontario, Canada were sampled in August 1998 and analyzed for 10 metals including Cu, Zn, Cd, Ni, Pb, Co, Mo, V, Ba and Ti. Statistical analyses showed that concentrations of the metals in H. azteca, water and sediment differed significantly (ANOVA, P<0.05) among lakes (except for Zn and Pb in H. azteca and Mo in water). There was a trend of declining metal concentration, especially for Cu, Ni and Co (in water, Hyalella and sediment), with distance from the smelters indicating the reduced impact of atmospheric pollution. Metal concentrations of lakes (water) in the Sudbury area were found to be lower compared to data from the 1970s and 1980s indicating an improvement in water quality. Metal concentrations in field-collected amphipods compared favorably with those measured in the laboratory in animals exposed to deep-water sediments, provided metal concentrations were not extremely low (e.g., Pb) and that water chemistry differences (e.g., pH) were taken into account for some metals (especially Cd). In general bioaccumulation of metals in H. azteca was predicted better from surface water than from sediment total metal.
    Matched MeSH terms: Geologic Sediments/chemistry*
  17. Elias MS, Ibrahim S, Samuding K, Kantasamy N, Rahman SA, Hashim A
    Appl Radiat Isot, 2019 Sep;151:116-123.
    PMID: 31174051 DOI: 10.1016/j.apradiso.2019.05.038
    A study was carried out to determine the concentrations of rare earth elements (REEs) in Linggi river sediments collected from 113 sampling locations. The sediment analysis was performed by Neutron activation analysis (NAA) and Inductively coupled plasma - mass spectrometry (ICP-MS). The results of Linggi river sediment were normalized to "recent" reference shale values. The means of total concentrations of REEs (ΣREE), light REEs (ΣLREE) and heavy REEs (ΣHREE) in Linggi sediment were 241.2, 219.2, and 22.0 mg/kg, respectively, which indicates enrichment compared to ΣREE, ΣLREE and ΣHREE reference shale values. Results obtained from enrichment factors (EF) show no enrichment to moderate enrichment of Linggi sediments, indicating the sources of REEs pollution originated from natural and land-based activities. A similar pattern was observed by comparing the REEs values of Linggi sediments to other references shale values. Ce (δCe) and Eu (δEu) anomalies indicate Linggi sediments showed positive anomaly of Ce whilst negative anomaly of Eu.
    Matched MeSH terms: Geologic Sediments/chemistry*
  18. Adithya VSP, Chidambaram S, Prasanna MV, Venkatramanan S, Tirumalesh K, Thivya C, et al.
    Arch Environ Contam Toxicol, 2021 Jan;80(1):308-318.
    PMID: 33398396 DOI: 10.1007/s00244-020-00798-9
    The presence of radioactive elements in groundwater results in high health risks on surrounding populations. Hence, a study was conducted in central Tamil Nadu, South India, to measure the radon levels in groundwater and determine the associated health risk. The study was conducted along the lithological contact of hard rock and sedimentary formation. The concentrations of uranium (U) varied from 0.28 to 84.65 µg/L, and the radioactivity of radon (Rn) varied from 258 to 7072 Bq/m3 in the collected groundwater samples. The spatial distribution of Rn in the study area showed that higher values were identified along the central and northern regions of the study area. The data also indicate that granitic and gneissic rocks are the major contributors to Rn in groundwater through U-enriched lithological zones. The radon levels in all samples were below the maximum concentration level, prescribed by Environmental Protection Agency. The effective dose levels for ingestion and inhalation were calculated according to parameters introduced by UNSCEAR and were found to be lesser (0.235-6.453 μSvy-1) than the recommended limit. Hence, the regional groundwater in the study area does not pose any health risks to consumers. The spatial distribution of Rn's effective dose level indicates the higher values were mainly in the central and northern portion of the study area consist of gneissic, quarzitic, and granitic rocks. The present study showed that Rn concentrations in groundwater depend on the lithology, structural attributes, the existence of uranium minerals in rocks, and the redox conditions. The results of this study provide information on the spatial distribution of Rn in the groundwater and its potential health risk in central Tamil Nadu, India. It is anticipated that these data will help policymakers to develop plans for management of drinking water resources in the region.
    Matched MeSH terms: Geologic Sediments/chemistry
  19. Wang CT, Sangeetha T, Yan WM, Chong WT, Saw LH, Zhao F, et al.
    J Environ Sci (China), 2019 Jan;75:163-168.
    PMID: 30473281 DOI: 10.1016/j.jes.2018.03.013
    Single-chamber sediment microbial fuel cells (SSMFCs) have received considerable attention nowadays because of their unique dual-functionality of power generation and enhancement of wastewater treatment performance. Thus, scaling up or upgrading SSMFCs for enhanced and efficient performance is a highly crucial task. Therefore, in order to achieve this goal, an innovative physical technique of using interface layers with four different pore sizes embedded in the middle of SSMFCs was utilized in this study. Experimental results showed that the performance of SSMFCs employing an interface layer was improved regardless of the pore size of the interface material, compared to those without such layers. The use of an interface layer resulted in a positive and significant effect on the performance of SSMFCs because of the effective prevention of oxygen diffusion from the cathode to the anode. Nevertheless, when a smaller pore size interface was utilized, better power performance and COD degradation were observed. A maximum power density of 0.032mW/m2 and COD degradation of 47.3% were obtained in the case of an interface pore size of 0.28μm. The findings in this study are of significance to promote the future practical application of SSMFCs in wastewater treatment plants.
    Matched MeSH terms: Geologic Sediments/chemistry*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links