Displaying publications 1 - 20 of 93 in total

Abstract:
Sort:
  1. Yahya I, Hassan MA, Maidin NNM, Mohamed MA
    Sensors (Basel), 2022 Oct 26;22(21).
    PMID: 36365910 DOI: 10.3390/s22218212
    A thin film of single-walled carbon nanotube (SWCNT) network field-effect transistor (FET) was fabricated by a simple, fast, and reliable deposition method for electronic applications. This study aims to develop a method for fabricating a thin film of random SWCNTs to be used as a transducer to detect human serum albumin (HSA) in biosensor applications. The random SWCNT network was deposited using the airbrush technique. The morphology of the CNT network was examined by utilising atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM), while electrical characteristics were analysed using three-terminal IV measurements. The thin film (SWCNT network) was applied as a transducer to detect human serum albumin (HSA) based on its covalent interaction with antibodies. HSA plays a significant part in the physiological functions of the human body. The surface alteration of the SWCNTs was verified using Fourier transform infrared (FTIR) spectroscopy. Electrical current-voltage measurements validated the surface binding and HSA detection. The biosensor linearly recorded a 0.47 fg/mL limit of detection (LOD) and a high sensitivity of 3.44 μA (g/mL)-1 between 1 fg/mL and 10 pg/mL. This device can also be used to identify a genuine HSA despite interference from other biomolecules (i.e., bovine serum albumin (BSA)), thus demonstrating the random SWCNT-FET immunosensor ability to quantify HSA in a complex biological environment.
    Matched MeSH terms: Immunoassay
  2. Thio TH, Ibrahim F, Al-Faqheri W, Soin N, Kahar Bador M, Madou M
    PLoS One, 2015;10(4):e0121836.
    PMID: 25853411 DOI: 10.1371/journal.pone.0121836
    A centrifugal compact disc (CD) microfluidic platform with reservoirs, micro-channels, and valves can be employed for implementing a complete immunoassay. Detection or biosensor chambers are either coated for immuno-interaction or a biosensor chip is inserted in them. On microfluidic CDs featuring such multi-step chemical/biological processes, the biosensor chamber must be repeatedly filled with fluids such as enzymes solutions, buffers, and washing solutions. After each filling step, the biosensor chamber needs to be evacuated by a passive siphoning process to prepare it for the next step in the assay. However, rotational speed dependency and limited space on a CD are two big obstacles to performing such repetitive filling and siphoning steps. In this work, a unique thermo-pneumatic (TP) Push-Pull pumping method is employed to provide a superior alternative biosensor chamber filling and evacuation technique. The proposed technique is demonstrated on two CD designs. The first design features a simple two-step microfluidic process to demonstrate the evacuation technique, while the second design shows the filling and evacuation technique with an example sequence for an actual immunoassay. In addition, the performance of the filling and evacuation technique as a washing step is also evaluated quantitatively and compared to the conventional manual bench top washing method. The two designs and the performance evaluation demonstrate that the technique is simple to implement, reliable, easy to control, and allows for repeated push-pulls and thus filling and emptying of the biosensor chamber. Furthermore, by addressing the issue of rotational speed dependency and limited space concerns in implementing repetitive filling and evacuation steps, this newly introduced technique increases the flexibility of the microfluidic CD platform to perform multi-step biological and chemical processes.
    Matched MeSH terms: Immunoassay/instrumentation*
  3. Mohd Zain R, Shaiful Bahrin NI, Ellan K, Thayan R
    Malays J Pathol, 2021 Dec;43(3):463-464.
    PMID: 34958069
    No abstract available.
    Matched MeSH terms: Immunoassay/methods*
  4. Liew WP, Sabran MR
    J Food Drug Anal, 2022 Nov 23;30(4):549-561.
    PMID: 36753365 DOI: 10.38212/2224-6614.3430
    The co-occurrence and accumulation of mycotoxin in food and feed constitutes a major issue to food safety, food security, and public health. Accurate and sensitive mycotoxins analysis can avoid toxin contamination as well as reduce food wastage caused by false positive results. This mini review focuses on the recent advance in detection methods for multiple mycotoxins, which mainly depends on immunoassay technologies. Advance immunoassay technologies integrated in mycotoxin analysis enable simultaneous detection of multiple mycotoxins and enhance the outcomes' quality. It highlights toxicogenomic as novel approach for hazard assessment by utilizing computational methods to map molecular events and biological processes. Indeed, toxicogenomic is a powerful tool to understand health effects from mycotoxin exposure as it offers insight on the mechanisms by which mycotoxins exposures cause diseases.
    Matched MeSH terms: Immunoassay/methods
  5. Zooraidah Z, Farida J
    Family Physician, 1990;2:27-29.
    Matched MeSH terms: Immunoassay
  6. Loh Q, Omar N, Glökler J, Lim TS
    Anal Biochem, 2014 Oct 15;463:67-9.
    PMID: 24972268 DOI: 10.1016/j.ab.2014.06.012
    Immunoassays are often coupled to peroxidase activity for antigen detection. Sensitivity and speed of detection has been increased by the advent of hybrid methods such as immuno-PCR (polymerase chain reaction). However, a more simplified immunoassay that retains both colorimetric peroxidase detection and effective DNA amplification in a setting closer to field application conditions has been nonexistent. Here we describe a method that successfully combines a competitive immunoassay with the new isothermal quadruplex-primed amplification (QPA) to generate excess quadruplex reporter molecules with intrinsic peroxidase DNAzyme activity.
    Matched MeSH terms: Immunoassay/methods*
  7. Lim EW, Meers PD
    Ann Acad Med Singap, 1989 Jul;18(4):348-51.
    PMID: 2679337
    A rapid method of assay, using a monoclonal antibody linked to alkaline phosphatase, was used for the detection of the Pontiac subgroup of Legionella pneumophila serogroup 1. It was tested for its specificity against 53 strains of Legionella recently isolated from the environment in Singapore and Malaysia. The specificity and sensitivity of this method of assay was confirmed, though there is some concern that the specificity was too narrow, and there are reservations about the criteria suggested for interpreting the results.
    Matched MeSH terms: Immunoassay/methods
  8. Lopez JB, Peng CL
    Clin Chem Lab Med, 2003 Oct;41(10):1369-72.
    PMID: 14580168
    The concentration of homocysteine (Hcy) rises rapidly after the collection of blood. This feature requires blood to be collected into the anticoagulants EDTA or heparin and the plasma to then be immediately separated; alternatively, the blood may be kept on ice and centrifuged within 1 hour. The use of chemical preservatives has been proposed as a means of stabilising Hcy levels in whole blood after collection. The objective of this study was to determine whether the commonly available fluoride-oxalate (Fl-Ox) and sodium citrate (Na-Cit) containers could stabilise Hcy levels in blood. Our results showed that when blood was collected into potassium EDTA (K-EDTA) tubes, Hcy levels rose from initial levels, on standing at room temperature (approximately 25 degrees C), by an average of 21% after 3 hours and 32% after 5 hours. The initial Hcy levels of blood collected into Fl-Ox and Na-Cit containers, however, were lower, at averages of 89% and 91%, respectively, compared to that of the same samples when collected into K-EDTA tubes. Hcy in these samples subsequently rose on standing, and after 5 hours was, on the average, 10 and 13% higher, respectively, compared with the initial levels in K-EDTA tubes. We conclude that Fl-Ox and Na-Cit do not stabilise Hcy in blood after collection and should not be used as preservatives.
    Matched MeSH terms: Immunoassay/methods*
  9. Jambari NN, Wang X, Alcocer M
    Methods Mol Biol, 2017;1592:129-137.
    PMID: 28315216 DOI: 10.1007/978-1-4939-6925-8_10
    Protein microarray is a miniaturized multi-analyte, solid-phased immunoassay where thousands of immobilized individual protein spots on a microscopic slide bind are bound to specific antibodies (immunoglobulins) from serum samples, which are then detected by fluorescent labeling. The image processing and pattern recognition are then quantitatively analyzed using advanced algorithms. Here, we describe the use of an in-house-produced complex protein microarray containing extracts and pure proteins that has been probed with antibodies present in the horse sera and detection by fluorophore-conjugated antibody and data analysis. The flexibility of the number and types of proteins that can be printed on the microarray allows different set of specific IgE immunoassay analysis to be carried out.
    Matched MeSH terms: Immunoassay/methods
  10. Kamariah K, Lopez JB, Satgunasingam N
    Br J Biomed Sci, 1994 Sep;51(3):296-8.
    PMID: 7881328
    We assessed the analytical performance of the Abbott IMxTM immunoassay analyser for total beta human chorionic gonadotropin (Beta hCG), follicle-stimulating hormone (FSH) and luteinising hormone (LH). The within-run CVs for various analyte concentrations were 2% to 6% while those for between-run imprecision in routine assay ranged from 4% to 10%. IMxTM values correlated well with radioimmunoassay for beta hCG, and immunoradiometric assay for FSH and LH; the correlation coefficients (r) were 0.97, 0.99 and 0.98 for total beta hCG, FSH and LH respectively. The average sensitivities were approximately 3.1, 0.2 and 0.5 iu/l for beta hCG, FSH and LH, respectively. Sample carry-over was not detected and there was negligible cross-reaction between LH and beta hCG in the respective assays. The automatic sample dilution protocol for beta hCG was superior to the manual procedure. The IMxTM is easy to operate and is able to process 24 samples in 40-45 minutes.
    Matched MeSH terms: Immunoassay/instrumentation*
  11. Yang H, Zhang Z, Zhou X, Binbr Abe Menen N, Rouhi O
    Environ Res, 2023 Dec 01;238(Pt 1):117163.
    PMID: 37722583 DOI: 10.1016/j.envres.2023.117163
    The current study has focused on electrochemical immunosensing of carcinoembryonic antigen (CEA) employing an immobilized antibody on a thionine, chitosan, or graphene oxide nanocomposite modified glassy carbon electrode (anti-CEA/THi-CS-GO/GCE) as an indicator of cancer monitoring. THi-CS-GO nanocomposites were made using ultrasonication, and analyses of their morphology and crystal structure using SEM, FTIR, and XRD showed that thionine and chitosan molecules were intercalated with stacking interactions with both the top and bottom of GO nanosheets. Electrochemical experiments revealed anti-CEA, THi-CS-GO/GCE to have exceptional sensitivity and selectivity towards CEA compounds. The detection limit value was established to be 0.8 pg/mL when it was discovered that variations in the decrease peak current were directly proportional to the logarithm concentration of CEA over a wide range from 10-3 to 104 ng/mL. Results of testing the immunosensor's application capability for detecting CEA in a sample of human serum show that ELISA and DPV results are very congruent. The produced immunosensor demonstrated adequate immunosensor precision in determining CEA in prepared genuine samples of human serum and clinical applications.
    Matched MeSH terms: Immunoassay/methods
  12. Imran M, Ahmed S, Abdullah AZ, Hakami J, Chaudhary AA, Rudayni HA, et al.
    Luminescence, 2023 Jul;38(7):1064-1086.
    PMID: 36378274 DOI: 10.1002/bio.4408
    The penicillin derivative amoxicillin (AMX) plays an important role in treating various types of infections caused by bacteria. However, excessive use of AMX may have negative health effects. Therefore, it is of utmost importance to detect and quantify the AMX in pharmaceutical drugs, biological fluids, and environmental samples with high sensitivity. Therefore, this review article provides valuable and up-to-date information on nanostructured material-based optical and electrochemical sensors to detect AMX in various biological and chemical samples. The role of using different nanostructured materials on the performance of important optical sensors such as colorimetric sensors, fluorescence sensors, surface-enhanced Raman scattering sensors, chemiluminescence/electroluminescence sensors, optical immunosensors, optical fibre-based sensors, and several important electrochemical sensors based on different electrode types have been discussed. Moreover, nanocomposites, polymer, and MXenes-based electrochemical sensors have also been discussed, in which such materials are being used to further enhance the sensitivity of these sensors. Furthermore, nanocomposite-based photo-electrochemical sensors and the market availability of biosensors including AMX have also been discussed briefly. Finally, the conclusion, challenges, and future perspectives of the above-mentioned sensing techniques for AMX detection are presented.
    Matched MeSH terms: Immunoassay
  13. Ang SH, Thevarajah TM, Woi PM, Alias YB, Khor SM
    J Chromatogr B Analyt Technol Biomed Life Sci, 2016 Mar 15;1015-1016:157-165.
    PMID: 26927875 DOI: 10.1016/j.jchromb.2016.01.059
    An immunosensor that operates based on the principles of lateral flow was developed for direct detection of hemoglobin A1c (HbA1c) in whole blood. We utilized colloidal gold-functionalized antibodies to transduce the specific signal generated when sandwich immuno-complexes were formed on the strip in the presence of HbA1c. The number and intensity of the test lines on the strips indicate normal, under control, and elevated levels of HbA1c. In addition, a linear relationship between HbA1c levels and immunosensor signal intensity was confirmed, with a dynamic range of 4-14% (20-130 mmol mol(-1)) HbA1c. Using this linear relationship, we determined the HbA1c levels in blood as a function of the signal intensity on the strips. Measurements were validated using the Bio-Rad Variant II HPLC and DCA Vantage tests. Moreover, the immunosensor was verified to be highly selective for detection of HbA1c against HbA0, glycated species of HbA0, and HbA2. The limit of detection was found to be 42.5 μg mL(-1) (1.35 mmol mol(-1)) HbA1c, which is reasonably sensitive compared to the values reported for microarray immunoassays. The shelf life of the immunosensor was estimated to be 1.4 months when stored at ambient temperature, indicating that the immunoassay is stable. Thus, the lateral flow immunosensor developed here was shown to be capable of performing selective, accurate, rapid, and stable detection of HbA1c in human blood samples.
    Matched MeSH terms: Immunoassay/instrumentation*; Immunoassay/methods*
  14. Gopinath SC, Tang TH, Citartan M, Chen Y, Lakshmipriya T
    Biosens Bioelectron, 2014 Jul 15;57:292-302.
    PMID: 24607580 DOI: 10.1016/j.bios.2014.02.029
    Sensing applications can be used to report biomolecular interactions in order to elucidate the functions of molecules. The use of an analyte and a ligand is a common set-up in sensor development. For several decades, antibodies have been considered to be potential analytes or ligands for development of so-called "immunosensors." In an immunosensor, formation of the complex between antibody and antigen transduces the signal, which is measurable in various ways (e.g., both labeled and label-free based detection). Success of an immunosensor depends on various factors, including surface functionalization, antibody orientation, density of the antibody on the sensor platform, and configuration of the immunosensor. Careful optimization of these factors can generate clear-cut results for any immunosensor. Herein, current aspects, involved in the generated immunosensors, are discussed.
    Matched MeSH terms: Immunoassay/instrumentation*; Immunoassay/methods
  15. Rahmah N, Taniawati S, Shenoy RK, Lim BH, Kumaraswami V, Anuar AK, et al.
    Trans R Soc Trop Med Hyg, 2002 1 31;95(6):601-4.
    PMID: 11816429
    A total of 753 serum samples from 6 institutions in 3 countries (Malaysia, Indonesia and India) were used to evaluate an immunochromatographic rapid dipstick test, Brugia Rapid, for diagnosis of Brugia malayi infection. The samples comprised sera from 207 microfilaria-positive individuals and 546 individuals from filaria non-endemic areas. The latter consisted of 70 individuals with soil-transmitted helminth infections, 68 with other helminth infections, 238 with protozoan infections, 12 with bacterial and viral infections and 158 healthy individuals. The dipstick is prepared with a goat anti-mouse antibody control line and a B. malayi recombinant-antigen test line. First, the dipstick is dipped into a well containing diluted patient serum, thus allowing specific anti-filarial antibody in the serum to react with the recombinant antigen. Then the dipstick is placed into an adjacent well containing reconstituted anti-human IgG4-gold. After 10 min, development of 2 red-purplish lines denotes a positive result and one line indicates a negative reaction. The overall results of the evaluation showed 97% sensitivity, 99% specificity, 97% positive predictive value and 99% negative predictive value. Brugia Rapid is thus a promising diagnostic tool for detection of B. malayi infection, and would be especially useful for the brugian filariasis elimination programme.
    Matched MeSH terms: Immunoassay/methods; Immunoassay/standards
  16. Kilbourn AM, Godfrey HP, Cook RA, Calle PP, Bosi EJ, Bentley-Hibbert SI, et al.
    J. Wildl. Dis., 2001 Jan;37(1):65-71.
    PMID: 11272506
    Diagnosis of active mycobacterial disease in orangutans (Pongo pygmaeus) has been impeded by high levels of non-specific intradermal skin test reactivity to mycobacterial antigens. This may be due in part to cross reactivity between antigens, tuberculin concentrations used or other species-specific factors. Antigen 85 (Ag85) complex proteins are major secretory products of actively growing mycobacteria, and measurement of serum Ag85 could provide a method for determining active mycobacterial infections that was not dependent on host immunity. Serum Ag85 was measured by dot-immunobinding assay using monoclonal anti-Ag85, purified Ag85 standard and enhanced chemiluminescence technology in coded serum samples from 14 captive orangutans from a zoo in Colorado, 15 semi-captive orangutans in Malaysia, and 19 free-ranging wild orangutans in Malaysia. Orangutans from Colorado (USA) were culture negative for Mycobacterium tuberculosis and M. avium, although all had laboratory suspicion or evidence of mycobacterial infection; median serum Ag85 was 10 microU/ml (range, <0.25-630 microU/ml). Of the semi-captive orangutans, six were skin test reactive and two were culture positive for M. avium on necropsy. Median serum Ag85 for this group was 1,880 microU/ml (0.75-7,000 microU/ml), significantly higher than that of Colorado zoo or free-ranging Malaysian orangutans. Median serum Ag85 in the latter group was 125 microU/ml (range, 0.75-2,500 microU/ml). These data suggest that suggest that additional studies using more specific reagents and more samples from animals of known status are appropriate.
    Matched MeSH terms: Immunoassay/methods; Immunoassay/veterinary
  17. Ma A, Wang Y, Liu XL, Zhang HM, Eamsobhana P, Yong HS, et al.
    J Helminthol, 2019 Jan;93(1):26-32.
    PMID: 29144215 DOI: 10.1017/S0022149X17001080
    Human gnathostomiasis is an emerging food-borne parasitic disease caused by nematodes of the genus Gnathostoma. Currently, serological tests are commonly applied to support clinical diagnosis. In the present study, a simple and rapid filtration-based test, dot immune-gold filtration assay (DIGFA) was developed using a partially purified antigen of Gnathostoma third-stage larvae (L3). A total of 180 serum samples were tested to evaluate the diagnostic potential of DIGFA for gnathostomiasis. The diagnostic sensitivity and specificity were 96.7% (29/30) and 100% (25/25), respectively. The cross-reactivity with sera from other helminthiasis patients ranged from 0 to 4%, with an average of 1.6% (2/125). DIGFA using a partially purified L3 antigen was not only simple and rapid, but also more accurate than standard assays for the diagnosis of human gnathostomiasis. DIGFA may represent a promising tool for application in laboratories or in the field, without requiring any instrumentation.
    Matched MeSH terms: Immunoassay/economics; Immunoassay/standards*
  18. Shamsuddin SH, Gibson TD, Tomlinson DC, McPherson MJ, Jayne DG, Millner PA
    Biosens Bioelectron, 2021 Apr 15;178:113013.
    PMID: 33508539 DOI: 10.1016/j.bios.2021.113013
    Polyoctopamine (POct), an amine-functionalised non-conducting polymer, as the transducer layer in an electrochemical biosensor, is presented. This polymer offers versatile covalent coupling either through thiol linker conjugation, carboxyl or aldehyde functional groups without the requirement of pre- or post-surface activation. The colorectal cancer biomarker carcinoembryonic antigen (CEA) was selected as the target analyte, whilst an antibody and a synthetic binding protein, an Affimer, were used as distinct bioreceptors to demonstrate the versatility of polyoctopamine as a transducer polymer layer for oriented immobilisation of the bioreceptors. The electrodeposited polymer layer was characterised using cyclic voltammetry, electrochemical impedance spectroscopy, and on-sensor chemiluminescent blotting. The performance of optimised POct-based biosensors were tested in spiked human serum. Results showed that the electropolymerisation of octopamine on screen printed gold electrode generates a thin polymer film with low resistance. Close proximity of the immobilised bioreceptors to the transducer layer greatly enhanced the sensitivity detection. The sensitivity of the smaller monomeric bioreceptor (Affimer, 12.6 kDa) to detect CEA was comparable to the dimeric antibody (150 kDa) with limit of detection at 11.76 fM which is significantly lower than the basal clinical levels of 25 pM. However, the Affimer-based sensor had a narrower dynamic range compared to the immunosensor (1-100 fM vs. 1 fM - 100 nM, respectively). All electrochemical measurements were done in less than 5 min with small sample volumes (10 μl). Hence, polyoctopamine features a simple fabrication of impedimetric biosensors using amine-functionalisation technique, provides rapid response time with enhanced sensitivity and label-free detection.
    Matched MeSH terms: Immunoassay
  19. Jasbeer, K., Ghazali, F.M., Cheah, Y.K., Son, R.
    MyJurnal
    The introduction of new agricultural commodities and products derived from modernbiotechnology may have an impact on human and animal health, the environment and economiesof countries. As more Genetically Modified Organisms (GMO) enter markets worldwide, themonitoring of GMOs is being preferred for obvious reasons such as determination of seed purity,verification of non-GMO status of agricultural crops and fulfilling GMO labeling provisions, tomention a few. Numerous GMO analytical methods which include screening, identification andquantification have been developed to reliably determine the presence and/or amount of GMOin agricultural commodities, in raw agricultural materials and in processed and refined ingredients.The detection of GMOs relies on the detection of transgenic DNA or protein material. For routineanalysis, a good sample preparation technique should reproducibly generate DNA/protein ofsufficient quality, purity and yield while minimizing the effects of inhibition andcontamination.
    The key sample preparation steps include homogenization, pretreatment, extraction andpurification. Due to the fact that analytical laboratories receive samples that are often processedand refined, the quality and quantity of transgenic target analyte (e.g. protein and DNA) frequentlychallenge the sensitivity of any detection method. With the development of GMO analysistechniques, the Polymerase Chain Reaction (PCR) technique has been the mainstay for GMOdetection, and the real-time PCR is the most effective and important method for GMOquantification. The choice of target sequence; for example a promoter, a terminator, a gene, or ajunction between two of these elements, is the single most important factor controlling the specificity of the PCR method. Recent developments include event-specific methods, particularlyuseful for identification and quantification of GM content. Although PCR technology has obvious
    limitations, the potentially high degree of sensitivity and specificity explains why PCR in its various
    formats, is currently the leading analytical technology employed in GMO analysis. Comparatively, immunoassays are becoming attractive tools for rapid field monitoring for the integrity of agricultural commodities in identity preservation systems, whereby non-specialised personnel can employ them in cost-effective manner. This review discusses various popular extraction methodologies and summarises the current status of the most widely used and easily applicable GMO analysis technologies in laboratories, namely the PCR and immunoassay technologies.
    Matched MeSH terms: Immunoassay
  20. Zhao X, Gopinath SCB, Zhao W
    Biotechnol Appl Biochem, 2023 Apr;70(2):502-508.
    PMID: 35661417 DOI: 10.1002/bab.2372
    Abdominal aortic aneurysm (AAA), a medical complication, occurs when the aortic area becomes swollen and very large. It is mandatory to identify AAA to avoid the breakdown of aneurysms. C-reactive protein (CRP) has been recognized as one of the biomarkers for identifying AAA due to the possibility of CRP produced in vascular tissue, which contributes to the formation of an aneurysm, and it is elevated in patients with a ruptured AAA. This research work was designed to develop an immunosensor on a multiwalled carbon nanotube (MWCNT)-modified surface to quantify the CRP level. Anti-CRP specificity was constructed on the MWCNT surface through a silane linker to interact with CRP. The detection limit of CRP was calculated as 100 pM with an R2 (determination coefficient) value of 0.9855 (y = 2.3446x - 1.9922) on a linear regression graph. The dose-dependent linear pattern was registered from 200 to 3000 pM and attained the saturation level during binding at 3000 pM. Furthermore, serum-spiked CRP showed a clear increase in the current response, proving the specific recognition of CRP in biological samples. This designed biosensor identifies CRP at a lower level and can help diagnose AAA.
    Matched MeSH terms: Immunoassay
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links