Displaying all 9 publications

Abstract:
Sort:
  1. Lee VS, Sukumaran SD, Tan PK, Kuppusamy UR, Arumugam B
    Comput Biol Chem, 2021 Jun;92:107501.
    PMID: 33989998 DOI: 10.1016/j.compbiolchem.2021.107501
    Naturally occurring proteins are emerging as novel therapeutics in the protein-based biopharmaceutical industry for the treatment of diabetes and obesity. However, proteins are not suitable for oral delivery due to short half-life, reduced physical and chemical stability and low permeability across the membrane. Chemical modification has been identified as a formulation strategy to enhance the stability and bioavailability of protein drugs. The present study aims to study the effect of charge-specific modification of basic amino acids (Lys, Arg) and guanidination on the interaction of insulin with its receptor using molecular modelling. Our investigation revealed that the guanidination of insulin (Lys-NHC = NHNH2) enhanced and exerted stronger binding of the protein to its receptor through electrostatic interaction than native insulin (Lys-NH3+). Point mutations of Lys and Arg (R22, K29; R22K, K29; R22, K29R; R22K, K29R) were attempted and the effects on the interaction and stability between insulin/modified insulins and insulin receptor were also analyzed in this study. The findings from the study are expected to provide a better understanding of the possible mechanism of action of the modified protein at a molecular level before advancing to real experiments.
    Matched MeSH terms: Insulin/chemistry*; Receptor, Insulin/chemistry*
  2. Chellathurai MS, Yong CL, Sofian ZM, Sahudin S, Hasim NBM, Mahmood S
    Int J Biol Macromol, 2023 Jul 15;243:125125.
    PMID: 37263321 DOI: 10.1016/j.ijbiomac.2023.125125
    Chitosan is an abundant natural cationic polysaccharide with excellent biodegradability, bioadhesion, and biocompatibility. Chitosan is extensively researched for various particulate oral insulin drug delivery systems. Oral insulin is economically efficient and more convenient than injections, with greater patient compliance. Electrostatic ionic interaction between cationic chitosan and anionic polymer or insulin leads to the formation of spontaneously self-assembled nanoparticles. This simple technique attracted many researchers as it can be carried out quickly in mild conditions without harmful solvents, such as surfactants or chemical cross-linkers that might degrade the insulin structure. The formulated chitosan nanoparticles help to protect the core insulin from enzymatic degradation in the digestive system and improve paracellular intestinal uptake from the enterocytes due to mucoadhesion and reversible tight junction opening. Moreover, functionalized chitosan nanoparticles create newer avenues for targeted and prolonged delivery. This review focuses on modified chitosan-insulin nanoparticles and their implications on oral insulin delivery. Dependent variables and their optimal concentration ranges used in self-assembly techniques for chitosan-insulin nanoparticular synthesis are summarized. This review provides a comprehensive guide to fine-tune the essential factors to formulate stable insulin-chitosan nanoparticles using mild ionic interactions.
    Matched MeSH terms: Insulin/chemistry
  3. Lim HP, Tey BT, Chan ES
    J Control Release, 2014 Jul 28;186:11-21.
    PMID: 24816070 DOI: 10.1016/j.jconrel.2014.04.042
    Natural biopolymers have attracted considerable interest for the development of delivery systems for protein drugs owing to their biocompatibility, non-toxicity, renewability and mild processing conditions. This paper offers an overview of the current status and future perspectives of particle designs using biopolymers for the stabilization and controlled-delivery of a model protein drug--insulin. We first describe the design criteria for polymeric encapsulation and subsequently classify the basic principles of particle fabrication as well as the existing particle designs for oral insulin encapsulation. The performances of these existing particle designs in terms of insulin stability and in vitro release behavior in acidic and alkaline media, as well as their in vivo performance are compared and reviewed. This review forms the basis for future works on the optimization of particle design and material formulation for the development of an improved oral delivery system for protein drugs.
    Matched MeSH terms: Insulin/chemistry*
  4. Ansary RH, Rahman MM, Awang MB, Katas H, Hadi H, Doolaanea AA
    Drug Deliv Transl Res, 2016 06;6(3):308-18.
    PMID: 26817478 DOI: 10.1007/s13346-016-0278-y
    The purpose of this study was to fabricate insulin-loaded double-walled and single-polymer poly(lactide-co-glycolide) (PLGA) microspheres using a fast degrading glucose core, hydroxyl-terminated poly(lactide-co-glycolide) (Glu-PLGA), and a moderate degrading carboxyl-terminated PLGA polymers. A modified water-in-oil-in-oil-in-water (w/o/o/w) emulsion solvent evaporation technique was employed to prepare double-walled microspheres, whereas single-polymer microspheres were fabricated by a conventional water-in-oil-in-water (w/o/w) emulsion solvent evaporation method. The effect of fabrication techniques and polymer characteristics on microspheres size, morphology, encapsulation efficiency, in vitro release, and insulin stability was evaluated. The prepared double-walled microspheres were essentially non-porous, smooth surfaced, and spherical in shape, whereas single-polymer microspheres were highly porous. Double-walled microspheres exhibited a significantly reduced initial burst followed by sustained and almost complete release of insulin compared to single-polymer microspheres. Initial burst release was further suppressed from double-walled microspheres when the mass ratio of the component polymers was increased. In conclusion, double-walled microspheres made of Glu-PLGA and PLGA can be a potential delivery system of therapeutic insulin.
    Matched MeSH terms: Insulin/chemistry
  5. Siddiqui NA, Billa N, Roberts CJ
    J Biomater Sci Polym Ed, 2017 Jun;28(8):781-793.
    PMID: 28278045 DOI: 10.1080/09205063.2017.1301774
    The principal challenge for the use of boronic acids (BA) as glucose sensors is their lack of specificity for glucose. We examined the selectivity of and insulin release from two boronic acids- (2-formyl-3-thienylboronic acid (FTBA) and 4-formylphenylboronic acid (FPBA)) conjugated chitosan scaffolds to glucose and fructose. Adsorption of glucose to BA: chitosan conjugates was dose-dependent up to 1:1 at 35 and 42% for FPBA and FTBA respectively but the FTBA conjugates adsorbed more glucose and fructose at respective FPBA ratios. The affinity of both BA conjugates to glucose decreased with increase in BA ratio. On the other hand, the affinity of both BA conjugates for fructose decreased from ratio 1:1 to 2:1 then rose again at 3:1. Insulin release from FPBA nanoparticles (FPBAINP) and FTBA nanoparticles (FTBAINP) were both concentration-dependent within glyceamically relevant values (1-3 mg/ml glucose and 0.002 mg/ml fructose). Furthermore, the total amounts of insulin released from FPBAINP in both the media were higher than from FTBAINP. Both FPBAINP and FTBAINP have the potential for development as a glucose-selective insulin delivery system in physiological settings.
    Matched MeSH terms: Insulin/chemistry*
  6. Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B
    Talanta, 2020 Jan 15;207:120321.
    PMID: 31594568 DOI: 10.1016/j.talanta.2019.120321
    An optical aptasensor-based sensing platform for rapid insulin detection was fabricated. Aminated porous silica microparticles (PSiMPs) were synthesized via a facile mini-emulsion method to provide large surface area for covalent immobilization of insulin-binding DNA aptamer (IGA3) by glutaraldehyde cross-linking protocol. A Nickel-salphen type complex with piperidine side chain [Ni(II)-SP] was synthesized with a simple one-pot reaction, and functionalized as an optical label due to strong π-π interaction between aromatic carbons of G-quadruplex DNA aptamer and planar aromatic groups of Ni(II)-SP to form the immobilized IGA3-Ni(II)-SP complex, i.e. the dye-labeled aptamer, thereby bringing yellow colouration to the immobilized G-quartet plane. Optical characterization of aptasensor towards insulin binding was carried out with a fiber optic reflectance spectrophotometer. The maximum reflectance intensity of the immobilized IGA3-Ni(II)-SP complex at 656 nm decreased upon binding with insulin as aptasensor changed to brownish orange colouration in the background. This allows optical detection of insulin as the colour change of aptasensor is dependent on the insulin concentration. The linear detection range of the aptasensor is obtained from 10 to 50 μIU mL-1 (R2 = 0.9757), which conformed to the normal fasting insulin levels in human with a limit of detection (LOD) at 3.71 μIU mL-1. The aptasensor showed fast response time of 40 min and long shelf life stability of >3 weeks. Insulin detection using healthy human serums with informed consent provided by participants suggests the DNA aptamer biosensor was in good agreement with ELISA standard method using BIOMATIK Human INS (Insulin) ELISA Kit.
    Matched MeSH terms: Insulin/chemistry
  7. Noruddin NAA, Hamzah MF, Rosman Z, Salin NH, Shu-Chien AC, Muhammad TST
    Molecules, 2021 May 03;26(9).
    PMID: 34063700 DOI: 10.3390/molecules26092682
    Momordica charantia is a popular vegetable associated with effective complementary and alternative diabetes management in some parts of the world. However, the molecular mechanism is less commonly investigated. In this study, we investigated the association between a major cucurbitane triterpenoid isolated from M. charantia, 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al (THCB) and peroxisome proliferator activated receptor gamma (PPARγ) activation and its related activities using cell culture and molecular biology techniques. In this study, we report on both M. charantia fruit crude extract and THCB in driving the luciferase activity of Peroxisome Proliferator Response Element, associated with PPARγ activation. Other than that, THCB also induced adipocyte differentiation at far less intensity as compared to the full agonist rosiglitazone. In conjunction, THCB treatment on adipocytes also resulted in upregulation of PPAR gamma target genes expression; AP2, adiponectin, LPL and CD34 at a lower magnitude compared to rosiglitazone's induction. THCB also induced glucose uptake into muscle cells and the mechanism is via Glut4 translocation to the cell membrane. In conclusion, THCB acts as one of the many components in M. charantia to induce hypoglycaemic effect by acting as PPARγ ligand and inducing glucose uptake activity in the muscles by means of Glut4 translocation.
    Matched MeSH terms: Insulin/chemistry
  8. Islam MR, Uddin S, Chowdhury MR, Wakabayashi R, Moniruzzaman M, Goto M
    ACS Appl Mater Interfaces, 2021 Sep 15;13(36):42461-42472.
    PMID: 34460218 DOI: 10.1021/acsami.1c11533
    Since injection administration for diabetes is invasive, it is important to develop an effective transdermal method for insulin. However, transdermal delivery remains challenging owing to the strong barrier function of the stratum corneum (SC) of the skin. Here, we developed ionic liquid (IL)-in-oil microemulsion formulations (MEFs) for transdermal insulin delivery using choline-fatty acids ([Chl][FAs])-comprising three different FAs (C18:0, C18:1, and C18:2)-as biocompatible surface-active ILs (SAILs). The MEFs were successfully developed using [Chl][FAs] as surfactants, sorbitan monolaurate (Span-20) as a cosurfactant, choline propionate IL as an internal polar phase, and isopropyl myristate as a continuous oil phase. Ternary phase behavior, dynamic light scattering, and transmission electron microscopy studies revealed that MEFs were thermodynamically stable with nanoparticle size. The MEFs significantly enhanced the transdermal permeation of insulin via the intercellular route by compromising the tight lamellar structure of SC lipids through a fluidity-enhancing mechanism. In vivo transdermal administration of low insulin doses (50 IU/kg) to diabetic mice showed that MEFs reduced blood glucose levels (BGLs) significantly compared with a commercial surfactant-based formulation by increasing the bioavailability of insulin in the systemic circulation and sustained the insulin level for a much longer period (half-life > 24 h) than subcutaneous injection (half-life 1.32 h). When [Chl][C18:2] SAIL-based MEF was transdermally administered, it reduced the BGL by 56% of its initial value. The MEFs were biocompatible and nontoxic (cell viability > 90%). They remained stable at room temperature for 3 months and their biological activity was retained for 4 months at 4 °C. We believe SAIL-based MEFs will alter current approaches to insulin therapy and may be a potential transdermal nanocarrier for protein and peptide delivery.
    Matched MeSH terms: Insulin/chemistry
  9. Li X, Xu A, Sheng H, Ting TH, Mao X, Huang X, et al.
    Pediatr Diabetes, 2018 03;19(2):251-258.
    PMID: 28791793 DOI: 10.1111/pedi.12560
    BACKGROUND: Sulfonylurea therapy can improve glycemic control and ameliorate neurodevelopmental outcomes in patients suffering from neonatal diabetes mellitus (NDM) with KCNJ11 or ABCC8 mutations. As genetic testing results are often delayed, it remains controversial whether sulfonylurea treatment should be attempted immediately at diagnosis or doctors should await genetic confirmation.

    OBJECTIVE: This study aimed to investigate the effectiveness and safety of sulfonylurea therapy in Chinese NDM patients during infancy before genetic testing results were available.

    METHODS: The medical records of NDM patients with their follow-up details were reviewed and molecular genetic analysis was performed. Sulfonylurea transfer regimens were applied in patients diagnosed after May 2010, and glycemic status and side effects were evaluated in each patient.

    RESULTS: There were 23 NDM patients from 22 unrelated families, 10 had KCNJ11 mutations, 3 harbored ABCC8 mutations, 1 had INS mutations, 4 had chromosome 6q24 abnormalities, 1 had a deletion at chromosome 1p36.23p36.12, and 4 had no genetic abnormality identified. Sixteen NDM infants were treated with glyburide at an average age of 49 days (range 14-120 days) before genetic confirmation. A total of 11 of 16 (69%) were able to successfully switch to glyburide with a more stable glucose profile. The responsive glyburide dose was 0.51 ± 0.16 mg/kg/d (0.3-0.8 mg/kg/d), while the maintenance dose was 0.30 ± 0.07 mg/kg/d (0.2-0.4 mg/kg/d). No serious adverse events were reported.

    CONCLUSIONS: Molecular genetic diagnosis is recommended in all patients with NDM. However, if genetic testing results are delayed, sulfonylurea therapy should be considered before such results are received, even in infants with newly diagnosed NDM.

    Matched MeSH terms: Insulin/chemistry
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links