METHODS: This cross-sectional study recruited 203 postmenopausal women (age ranged from 51 to 85 years old) in community settings. The dietary intakes of the participants were assessed using a validated interviewer-administered semi-quantitative food frequency questionnaire (FFQ), while dietary acid load (DAL) was estimated using net endogenous acid production (NEAP). Agena® MassARRAY genotyping analysis and serum collagen type 1 cross-linked C-telopeptide (CTX1) were used to identify the IL6 genotype and as a bone resorption marker, respectively. The interactions between diet and single-nucleotide polymorphisms (SNPs) were assessed using linear regressions.
RESULTS: A total of 203 healthy postmenopausal women aged between 51 and 85 years participated in this study. The mean BMI of the participants was 24.3 kg/m2. In IL6 -174 G/C, all the participants carried the GG genotype, while the C allele was absent. Approximately 40% of the participants had a high dietary acid load. Dietary acid load (B = 0.15, p = 0.031) and the IL6 -572 CC genotype group (B = 0.14, p = 0.044) were positively associated with a higher bone resorption. However, there was no moderating effect of the IL6 genetic polymorphism on the relationship between and acid ash diet and bone resorption markers among the postmenopausal women (p = 0.79).
CONCLUSION: High consumption of an acid ash diet and the IL6 -572 C allele seem to attribute to high bone resorption among postmenopausal women. However, our finding does not support the interaction effect of dietary acidity and IL6 (-174G/C and -572G/C) polymorphisms on the rate of bone resorption. Taken together, these results have given scientific research other candidate genes to focus on which may interact with DAL on bone resorption, to enhance planning for preventing or delaying the onset of osteoporosis among postmenopausal women.
METHODS: We conducted a targeted, systematic search and identified 17 articles. We analyzed cytokine clearance, sieving coefficient (SC), ultrafiltrate (UF) concentration, and percentage removal. As this review concerns technical appraisal of EBP techniques, we made no attempts to appraise the methodology of the studies included. Results are in descriptive terms only.
RESULTS: Applying predicted clearance for 80 kg human, high volume hemofiltration (HVHF) techniques and plasmafiltration (PF) showed the highest rates of cytokine removal. High cutoff (HCO)/HF and PF techniques showed modest ability to clear cytokines using low to medium flows. Standard hemofiltration had little efficacy. At higher flows, HCO/HF achieved clearances between 30 and 70 ml/min for IL-6 and IL-10. There was essentially no removal of tumor necrosis factor (TNF)-alpha outside of PF.
CONCLUSIONS: Experimental animal studies indicate that HVHF (especially with HCO filters) and plasmafiltration have the potential to achieve appreciable IL-6 and IL-10 clearances. However, only PF can remove TNF-alpha reliably.
METHODS: There were 104 participants in the study: 19 healthy volunteers, 23 patients with periodontitis, 28 patients with T1DM, and 34 patients with T1DM and periodontitis. Levels of blood glucose/glycated hemoglobin (International Federation of Clinical Chemistry [IFCC]) were determined by high-performance liquid chromatography. Levels of IL-6, IL-8, and CXCL5 in plasma were determined by enzyme-linked immunosorbent assay (ELISA). In vitro stimulation of OKF6/TERT-2 cells and THP-1 monocytes was performed with combinations of AGE and P. gingivalis LPS. Changes in expression of IL-6, IL-8, and CXCL5 were monitored by ELISA and real-time polymerase chain reaction.
RESULTS: Patients with diabetes and periodontitis had higher plasma levels of IL-8 than patients with periodontitis alone. Plasma levels of IL-8 correlated significantly with IFCC units, clinical probing depth, and attachment loss. AGE and LPS, alone or in combination, stimulated IL-6, IL-8, and CXCL5 expression in both OKF6/TERT-2 cells and THP-1 monocytes.
CONCLUSIONS: Elevated plasma levels of IL-8 potentially contribute to the cross-susceptibility between periodontitis and T1DM. P. gingivalis LPS and AGE in combination caused significantly greater expression of IL-6, IL-8, and CXCL5 from THP-1 monocytes and OKF6/TERT-2 cells than LPS alone.