Displaying publications 1 - 20 of 70 in total

Abstract:
Sort:
  1. Sharma JN
    Pharmacol. Toxicol., 1988 Nov;63(5):310-6.
    PMID: 3070519
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  2. Iyngkaran, N., Yadav, M., Boey, G.B., Davis, K.
    MyJurnal
    Estimation of oligosaccharidases in the jejunal mucosa is useful in the diagnosis and evaluation of primary and secondary oligosaccharide intolerance. Until recently these enzymes have been estimated by the method of Dahlgvist.4While the method is accurate and reliable it is tedious and cumbersome. We describe here a semi quantitative method, using the glucose analyser. (Copied from article).
    Matched MeSH terms: Intestinal Mucosa
  3. Dar MJ, Ali H, Khan A, Khan GM
    J Drug Target, 2017 Aug;25(7):582-596.
    PMID: 28277824 DOI: 10.1080/1061186X.2017.1298601
    Colon-specific drug delivery has found important applications in the wide array of diseases affecting the lower intestinal tract. Recent developments and advancements in the polymer-based colonic delivery ensure targeted therapeutics with reduced systemic adverse effects. Latest progress in the understanding of polymer science has decorated a polymer-based formulation with a number of special features, which may prove effective in the localized drug targeting at specific sites of the intestine. Upon oral administration, polymeric vehicles or polymer-coated formulations serve to protect the drug from premature release and degradation in the upper gastrointestinal tract. Moreover, it also facilitates the selective accumulation and controlled release of the drug at inflamed sites of the colon. This review article focuses on a wide coverage of major polymers, their modifications, pros and cons, mechanism of colon targeting and applications as a vehicle system for colonic drug delivery, with a special emphasis on the inflammatory bowel disease.
    Matched MeSH terms: Intestinal Mucosa/drug effects*; Intestinal Mucosa/metabolism; Intestinal Mucosa/pathology
  4. Pathmanathan SG, Lawley B, McConnell M, Baird MA, Tannock GW
    Anaerobe, 2020 Feb;61:102112.
    PMID: 31629806 DOI: 10.1016/j.anaerobe.2019.102112
    Immuno-modulatory effects of infant gut bacteria were tested on poly(I:C) stimulated HT-29 intestinal epithelial cells. Blautia producta, Bacteroides vulgatus, Bacteroides fragilis and Bacteroides thetaiotaomicron decreased transcription of poly(I:C)-induced inflammatory genes. Modulation of basal level and poly(I:C)-induced IL-8 secretion varied between bacterial species, and between heat treated and non-heat treated bacterial cells.
    Matched MeSH terms: Intestinal Mucosa/metabolism; Intestinal Mucosa/microbiology; Intestinal Mucosa/pathology
  5. Mahadeven M, Samad SA, Leong KS
    Med J Malaysia, 1994 Jun;49(2):192-4.
    PMID: 8090105
    The intraoperative localisation of small intestinal bleeding lesions identified at pre-operative angiography has always been difficult, resulting in extensive resections in doubtful cases. We report two patients in whom, at angiography, a small intestinal lesion was noted to be the cause of gastrointestinal haemorrhage. They then underwent superselective mesenteric arterial cannulation at a second angiographic procedure and were operated upon with the angiographic catheter left within the branch responsible for the bleeding. This superselective catheter placement facilitates precise localisation of the bleeding site intraoperatively, enabling limited segmental resection of bowel. Both patients have had no recurrent bleeding episodes.
    Matched MeSH terms: Intestinal Mucosa/pathology
  6. Goh KL, Peh SC, Wong NW
    Med J Malaysia, 1986 Dec;41(4):347-51.
    PMID: 3670159
    Three cases of pseudomembranous colitis seen over the past one year in the Medical Unit, University Hospital, Kuala Lumpur, are reported.
    The historical background, spectrum of clinical presentation, diagnosis and treatment of the disease are discussed. Early and wider use of sigmoidoscopy in patients with predisposing factors to pseudomembranous colitis have resulted in increased diagnosis of the condition.
    Matched MeSH terms: Intestinal Mucosa/pathology
  7. Li X, Tan CP, Liu YF, Xu YJ
    J Agric Food Chem, 2020 Dec 16;68(50):14728-14738.
    PMID: 33289375 DOI: 10.1021/acs.jafc.0c07378
    The intestine is an important digestive organ of the human body, and its barrier is the guardian of the body from the external environment. The impairment of the intestinal barrier is believed to be an important determinant in various foodborne diseases. Food hazards can lead to the occurrence of many foodborne diseases represented by inflammation. Therefore, understanding the mechanisms of the impact of the food hazards on intestinal barriers is essential for promoting human health. This review examined the relationship between food hazards and the intestinal barrier in three aspects: apoptosis, imbalance of gut microbiota, and pro-inflammatory cytokines. The mechanism of dysfunctional gut microbiota caused by food hazards was also discussed. This review discusses the interaction among food hazards, intestinal barrier, and foodborne diseases and, thus, offers a new thought to deal with foodborne disease.
    Matched MeSH terms: Intestinal Mucosa/metabolism*
  8. Iyngkaran N, Yadav M, Looi LM, Boey CG, Lam KL, Balabaskaran S, et al.
    J Pediatr Gastroenterol Nutr, 1988 Jan-Feb;7(1):68-75.
    PMID: 3335989
    The effect of soy protein on the small bowel mucosa of 18 infants with acute gastroenteritis was studied. The infants were maintained on a protein hydrolysate formula for 6-8 weeks, following which they were readmitted for soy protein challenge studies. Jejunal biopsy was performed before and 24 h after challenge. On the basis of the clinical and histological reaction to soy protein challenge, three groups were identified. Group 1 consisted of three infants who had clinical and histological reaction. There was associated depletion of mucosal enzymes, lactase, sucrase, malatase, alkaline phosphatase, and blood xylose levels. Group 2 consisted of seven infants who had histological reaction but no clinical symptoms. Two of these seven infants, however, developed clinical reaction when rechallenged with soy protein 2 and 90 days later. Following challenge, mucosal enzymes and blood xylose levels were depressed in five of the seven infants tested. Group 3 consisted of eight infants who did not have either a clinical or a histological reaction. The mucosal enzymes and blood xylose levels were not depressed in four infants tested. The present study shows that the small bowel mucosa of some young infants recovering from acute gastroenteritis remains sensitive to soy protein for a variable period of time. The feeding of soy protein to these infants may result in the persistence of mucosal damage and perpetuation of diarrhea.(ABSTRACT TRUNCATED AT 250 WORDS)
    Matched MeSH terms: Intestinal Mucosa/drug effects*; Intestinal Mucosa/enzymology; Intestinal Mucosa/pathology
  9. Izuddin WI, Loh TC, Foo HL, Samsudin AA, Humam AM
    Sci Rep, 2019 Jul 09;9(1):9938.
    PMID: 31289291 DOI: 10.1038/s41598-019-46076-0
    We investigate the effects of postbiotic Lactobacillus plantarum RG14 on gastrointestinal histology, haematology, mucosal IgA concentration, microbial population and mRNA expression related to intestinal mucosal immunity and barrier function. Twelve newly weaned lambs were randomly allocated to two treatment groups; the control group without postbiotic supplementation and postbiotic group with supplementation of 0.9% postbiotic in the diet over a 60-day trial. The improvement of rumen papillae height and width were observed in lambs fed with postbiotics. In contrast, no difference was shown in villi height of duodenum, jejunum and ileum between the two groups. Lambs received postbiotics had a lower concentration of IgA in jejunum but no difference in IgA concentration in serum and mucosal of the rumen, duodenum and ileum. In respect of haematology, postbiotics lowered leukocyte, lymphocyte, basophil, neutrophil and platelets, no significant differences in eosinophil. The increase in of IL-6 mRNA and decrease of IL-1β, IL-10, TNF mRNA were observed in the jejunum of lambs receiving postbiotics. Postbiotics also improved the integrity of the intestinal barrier by the upregulation of TJP-1, CLDN-1 and CLDN-4 mRNA. Postbiotic supplementation derived from L. plantarum RG14 in post-weaning lambs enhance the ruminal papillae growth, immune status and gastrointestinal health.
    Matched MeSH terms: Intestinal Mucosa/drug effects*; Intestinal Mucosa/metabolism; Intestinal Mucosa/microbiology
  10. Wakid MH, Toulah FH, Mahjoub HA, Alsulami MN, Hikal WM
    Trop Biomed, 2020 Dec 01;37(4):1008-1017.
    PMID: 33612753 DOI: 10.47665/tb.37.4.1008
    Giardiasis is the major water-borne diarrheal disease present worldwide caused by the common intestinal parasite, Giardia duodenalis. This work aims to investigate the effect of G. duodenalis infection pathogenicity in immunosuppressed animals through histopathological examination. A total of 45 BALB/c mice were divided into four groups; G1 (negative control), G2 (healthy animals exposed to Giardia); G3 (immunosuppressed animals exposed to Giardia), and G4 (non-exposed immunosuppressed animals). Our study revealed that G3 was the most affected group with an infection rate of 100%. The animals showed general weakness, soft stool, and high death rate with severe histopathological changes in the duodenum and mild degenerative changes in hepatic tissues. In G2, the maximal lesions in both duodenum and liver were on the 11th day. We spotted damage in the villi, edema in the central core, and submucosa, in addition to increased cellular infiltration with inflammation in lamina propria. The presence of the parasites within the villi and the lumen was clear. Most of the hepatocytes revealed hydropic and fatty changes, also dilated congested central veins and edema were observed. G3 changes were more intense than G2 with massive Giardia trophozoites between the intestinal villi, lumen, and extensive fatty liver degeneration. Immune suppression plays a significant role in the severity of injury with the Giardia parasites in duodenum and liver cells.
    Matched MeSH terms: Intestinal Mucosa/parasitology; Intestinal Mucosa/pathology
  11. Iyngkaran N, Yadav M, Boey CG
    Singapore Med J, 1995 Aug;36(4):393-6.
    PMID: 8919154
    Enterokinase has a critical role in initiating proteolytic digestion by hydrolysing the conversion of pancreatic trypsinogen into trypsin. The enzyme is synthesised by enterocytes of the proximal small intestine and initially incorporated into the brush border from where it is released into the intestinal lumen by the action of pancreatic secretions. The aim of the study was to analyse enterokinase activity in the duodenal mucosa of infants with diarrhoeal disease including cow's milk protein-sensitive enteropathy. Our observations show that the mean depletion of enterokinase was only 17% compared to 60-80% for other brush border enzymes like disaccharidases, peptidases and alkaline phosphatases in infants with diarrhoea. This suggests that enterokinase activity in the small bowel enteropathies may be dependent not only on the degree of mucosal damage specifically but also on the extent of damage to the goblet cell population where the enzyme is synthesised. Thus the enterokinase activity was reduced in acute and chronic diarrhoea with marked mucosal damage where significant reduction of goblet cell population was evident but the enzyme was relatively little affected when the mucosa was damaged mildly.
    Matched MeSH terms: Intestinal Mucosa/enzymology; Intestinal Mucosa/pathology*
  12. Williams AR, Krych L, Fauzan Ahmad H, Nejsum P, Skovgaard K, Nielsen DS, et al.
    PLoS One, 2017;12(10):e0186546.
    PMID: 29028844 DOI: 10.1371/journal.pone.0186546
    Polyphenols are a class of bioactive plant secondary metabolites that are thought to have beneficial effects on gut health, such as modulation of mucosal immune and inflammatory responses and regulation of parasite burdens. Here, we examined the interactions between a polyphenol-rich diet supplement and infection with the enteric nematode Ascaris suum in pigs. Pigs were fed either a basal diet or the same diet supplemented with grape pomace (GP), an industrial by-product rich in polyphenols such as oligomeric proanthocyanidins. Half of the animals in each group were then inoculated with A. suum for 14 days to assess parasite establishment, acquisition of local and systemic immune responses and effects on the gut microbiome. Despite in vitro anthelmintic activity of GP-extracts, numbers of parasite larvae in the intestine were not altered by GP-supplementation. However, the bioactive diet significantly increased numbers of eosinophils induced by A. suum infection in the duodenum, jejunum and ileum, and modulated gene expression in the jejunal mucosa of infected pigs. Both GP-supplementation and A. suum infection induced significant and apparently similar changes in the composition of the prokaryotic gut microbiota, and both also decreased concentrations of isobutyric and isovaleric acid (branched-chain short chain fatty acids) in the colon. Our results demonstrate that while a polyphenol-enriched diet in pigs may not directly influence A. suum establishment, it significantly modulates the subsequent host response to helminth infection. Our results suggest an influence of diet on immune function which may potentially be exploited to enhance immunity to helminths.
    Matched MeSH terms: Intestinal Mucosa/drug effects*; Intestinal Mucosa/immunology; Intestinal Mucosa/metabolism; Intestinal Mucosa/microbiology
  13. Kermani N, Abu-Hassan ZA, Dieng H, Ismail NF, Attia M, Abd Ghani I
    PLoS One, 2013;8(5):e62884.
    PMID: 23675435 DOI: 10.1371/journal.pone.0062884
    Biological control using pathogenic microsporidia could be an alternative to chemical control of the diamondback moth (DBM) Plutella xylostella (Lepidoptera: Plutellidae). The microsporidium Nosema bombycis (NB) is one of the numerous pathogens that can be used in the Integrated Pest Management (IPM) of DBM. However, its pathogenicity or effectiveness can be influenced by various factors, particularly temperature. This study was therefore conducted to investigate the effect of temperature on NB infection of DBM larvae. Second-instar larvae at different doses (spore concentration: 0, 1×10²,1×10³,1×10⁴, and 1×10⁵) at 15°, 20°, 25°, 30° and 35°C and a relative humidity(RH) of 65% and light dark cycle (L:D) of 12∶12. Larval mortality was recorded at 24 h intervals until the larvae had either died or pupated. The results showed that the spore concentration had a significant negative effect on larval survival at all temperatures, although this effect was more pronounced (92%) at 35°C compared with that at 20 and 30°C (≃50%) and 25°C (26%). Histological observations showed that Nosema preferentially infected the adipose tissue and epithelial cells of the midgut, resulting in marked vacuolization of the cytoplasm. These findings suggest that Nosema damaged the midgut epithelial cells. Our results suggest that Nosema had a direct adverse effect on DBM, and could be utilized as an important biopesticide alternative to chemical insecticides in IPM.
    Matched MeSH terms: Intestinal Mucosa/microbiology; Intestinal Mucosa/ultrastructure
  14. Chew MF, Teoh KH, Cheah PL
    Malays J Pathol, 2012 Jun;34(1):25-8.
    PMID: 22870594 MyJurnal
    CD133, a marker which has been advocated to mark colorectal carcinoma "stem or tumour initiating cells" is amongst the frequently studied markers in colorectal cancer. A study was conducted at the Department of Pathology, University of Malaya Medical Centre to determine the expression of CD133 in 56 archived, formalin-fixed, paraffin-embedded colorectal adenocarcinoma in comparison with adjacent benign colorectal epithelium by immunohistochemical staining for CD133 expression. CD133 immunopositivity was determined as staining at the glandular luminal surface or in the intraluminal debris. Expression was semiquantitated for (1) proportion of CD133 immunopositivity in the malignant or adjacent benign colorectal epithelium and (2) intensity of staining. The final score of CD133 immunopositivity was arbitrarily taken as proportion of CD133 immunopositivity multiplied by intensity of staining in both the malignant and adjacent benign colorectal epithelium. CD133 expression was observed in significantly increased frequency in 49 (87.5%) colorectal adenocarcinoma compared with 15 (26.8%) of the adjacent benign colorectal epithelium (p<0.05). In terms of immunopositivity score (proportion of CD133 immunopositivity multiplied by intensity of staining), colorectal adenocarcinoma had a mean arbitrary score of 8.5 which was significantly higher than the mean immunopositivity score of 0.5 of the adjacent benign colorectal epithelium (p<0.05). In addition, the maximum immunopositivity score for the adjacent benign colorectal epithelium was 4, while 38 (67.9%) of colorectal adenocarcinoma had scores >4. This study shows that CD133 is able to mark colorectal adenocarcinoma but it is still unclear at this juncture whether CD133 is indeed a marker for colorectal adenocarcinoma "stem cells".
    Matched MeSH terms: Intestinal Mucosa/metabolism; Intestinal Mucosa/pathology
  15. Amin A, Ali A, Kurunathan S, Cheong TG, Al-Jashamy KA, Jaafar H, et al.
    Histol Histopathol, 2009 05;24(5):559-65.
    PMID: 19283664 DOI: 10.14670/HH-24.559
    Vibrio cholerae is the causative agent of the infectious disease, cholera. The bacteria adhere to the mucosal membrane and release cholera toxin, leading to watery diarrhea. There are >100 serovars of V. cholerae, but the O1 and O139 serovars are the main causative agents of cholera. The present study aimed to compare the severity of intestinal mucosal infection caused by O1 El Tor and O139 V. cholerae in a rabbit ileal loop model. The results showed that although the fluid accumulation was similar in the loops inoculated with O1 and O139 V. cholerae, the presence of blood was detected only in the loops inoculated with the O139 serovar. Serosal hemorrhage was confirmed by histopathological examination and the loops inoculated with O139 showed massive destruction of villi and loss of intestinal glands. The submucosa and muscularis mucosa of the ileum showed the presence of edema with congested blood vessels, while severe hemorrhage was seen in the muscularis propria layer. The loops inoculated with O1 El Tor showed only minimal damage, with intact intestinal villi and glands. Diffuse colonies of the O139 serovar were seen to have infiltrated deep into the submucosal layer of the intestine. Although the infection caused by the O1 serovar was focal and invasive, it was more superficial than that due to O139, and involved only the villi. These observations were confirmed by immunostaining with O1 and O139 V. cholerae-specific monoclonal antibodies. The peroxidase reaction demonstrated involvement of tissues down to the submucosal layer in O139 V. cholerae infection, while in O1 El Tor infection, the reaction was confined mainly to the villi, and was greatly reduced in the submucosal region. This is the first reported study to clearly demonstrate the histopathological differences between infections caused by the O139 Bengal and O1 El Tor pathogenic serovars of V. cholerae.
    Matched MeSH terms: Intestinal Mucosa/microbiology*; Intestinal Mucosa/pathology*
  16. Low END, Mokhtar NM, Wong Z, Raja Ali RA
    J Crohns Colitis, 2019 May 27;13(6):755-763.
    PMID: 30954025 DOI: 10.1093/ecco-jcc/jjz002
    BACKGROUND AND AIMS: Patients with ulcerative colitis [UC] with long disease duration have a higher risk of developing colitis-associated cancer [CAC] compared with patients with short-duration UC. The aim of this study was to identify transcriptomic differences associated with the duration of UC disease.

    METHODS: We conducted transcriptome profiling on 32 colonic biopsies [11 long-duration UC, ≥20 years; and 21 short-duration UC, ≤5 years] using Affymetrix Human Transcriptome Array 2.0. Differentially expressed genes [fold change > 1.5, p < 0.05] and alternative splicing events [splicing index > 1.5, p < 0.05] were determined using the Transcriptome Analysis Console. KOBAS 3.0 and DAVID 6.8 were used for KEGG and GO analysis. Selected genes from microarray analysis were validated using qPCR.

    RESULTS: There were 640 differentially expressed genes between both groups. The top ten upregulated genes were HMGCS2, UGT2A3 isoforms, B4GALNT2, MEP1B, GUCA2B, ADH1C, OTOP2, SLC9A3, and LYPD8; the top ten downregulated genes were PI3, DUOX2, VNN1, SLC6A14, GREM1, MMP1, CXCL1, TNIP3, TFF1, and LCN2. Among the 123 altered KEGG pathways, the most significant were metabolic pathways; fatty acid degradation; valine, leucine, and isoleucine degradation; the peroxisome proliferator-activated receptor signalling pathway; and bile secretion, which were previously linked with CAC. Analysis showed that 3560 genes exhibited differential alternative splicing between long- and short-duration UC. Among them, 374 were differentially expressed, underscoring the intrinsic relationship between altered gene expression and alternative splicing.

    CONCLUSIONS: Long-duration UC patients have altered gene expressions, pathways, and alternative splicing events as compared with short-duration UC patients, and these could be further validated to improve our understanding of the pathogenesis of CAC.

    Matched MeSH terms: Intestinal Mucosa/metabolism; Intestinal Mucosa/pathology*
  17. Iyngkaran N, Yadav M, Boey CG
    Arch Dis Child, 1989 Sep;64(9):1256-60.
    PMID: 2817945
    Eleven infants who were suspected clinically of having cows' milk protein sensitive enteropathy were fed with a protein hydrolysate formula for six to eight weeks, after which they had jejunal and rectal biopsies taken before and 24 hours after challenge with cows' milk protein. When challenged six infants (group 1) developed clinical symptoms and five did not (group 2). In group 1 the lesions developed in both the jejunal mucosa (four infants at 24 hours and one at three days), and the rectal mucosa, and the injury was associated with depletion of alkaline phosphatase activity. Infants in group 2 were normal. It seems that rectal injury that develops as a direct consequence of oral challenge with the protein in reactive infants may be used as one of the measurements to confirm the diagnosis of cows' milk protein sensitive enteropathy. Moreover, ingestion of such food proteins may injure the distal colonic mucosa without affecting the proximal small gut in some infants.
    Matched MeSH terms: Intestinal Mucosa/enzymology; Intestinal Mucosa/pathology*
  18. Kabeir BM, Yazid AM, Stephenie W, Hakim MN, Anas OM, Shuhaimi M
    Lett Appl Microbiol, 2008 Jan;46(1):32-7.
    PMID: 17944838
    To assess the safety of Bifidobacterium pseudocatenulatum G4 in BALB/c mice that involves examination of bacterial translocation, changes in the internal organs and histology of the intestinal lining.
    Matched MeSH terms: Intestinal Mucosa/cytology; Intestinal Mucosa/microbiology
  19. Iyngkaran N, Yadav M, Boey CG, Lam KL
    J Pediatr Gastroenterol Nutr, 1988 Sep-Oct;7(5):667-74.
    PMID: 3183870
    A series of 31 infants, 28 with cow's milk protein sensitive enteropathy (CMPSE) and 3 controls, was studied for severity and extent of mucosal damage of the upper small bowel in relation to the development of clinical symptoms. Following challenge with the offending cow's milk, 18 infants (Group 1) developed severe mucosal changes at both the proximal and distal small bowel mucosa and all of these infants presented with clinical symptoms. The other 10 infants (Group 2) who did not develop clinical symptoms following the challenge had less severe damage to the distal small bowel mucosa as compared to the proximal region. The histological score of both the proximal and distal postchallenge biopsies were significantly lower in Group 2 as compared to Group 1 infants. The mucosal disaccharidase and alkaline phosphatase levels were depleted in both the proximal and distal biopsies following challenge but the depletion was greater in the proximal than the distal biopsies. It is suggested that the extent and severity of mucosal damage to the proximal duodenum and jejunum have a critical bearing on the development of clinical symptoms.
    Matched MeSH terms: Intestinal Mucosa/enzymology; Intestinal Mucosa/pathology*
  20. Goh KL, Parasakthi N, Peh SC, Puthucheary SD, Wong NW
    Singapore Med J, 1994 Apr;35(2):161-2.
    PMID: 7939811
    With the increasing recognition of the importance of H. pylori in gastrointestinal disease, there is a need for a reliable, efficient and yet inexpensive diagnostic test. The performance of the rapid urease test (RUT) as an endoscopy suite diagnostic test was compared to the established methods of culture, histology and Gram stain of tissue smear, in 274 gastric biopsy samples. Histology had the highest sensitivity of 99.3% followed by the RUT (96.6%). Culture and Gram stain of tissue smear had 100% specificity, while the rapid urease test had 99.2% specificity. The RUT had a positive predictive value of 99.3% and a negative predictive value of 96.2%. The RUT is an inexpensive, rapid and reliable diagnostic test of H. pylori infection.
    Matched MeSH terms: Intestinal Mucosa/microbiology; Intestinal Mucosa/pathology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links