Africa is faced with an increasing underrepresentation of her research progress in many fields of science including neuroscience. This underrepresentation stems from the very low investments directed towards research by African governments as these are thought to be high-priced. Scientists and researchers within the continent are left to compete highly for the very limited research grants or choose to fund research from their personal purse. Therefore, presenting a need for all possible strategies to make science and research approaches more affordable in Africa. This paper presents one of such strategy, which advocates the use of invertebrate animal models for neuroscience research in place of the commonly used vertebrate models. Invertebrates are cheaper, more available and easy to handle options and their use is on the rise, even in the developed societies of the world. Here, we investigate the current state of invertebrate neuroscience research in Africa looking at countries and institutions conducting neuroscience research with invertebrates and their publication output. We discuss the factors which impede invertebrate neuroscience research in Africa like lack of research infrastructure and adequate expert scientists and conclude by suggesting solutions to these challenges.
Although the macroinvertebrates have been widely used as bio-indicator for river water quality assessment in developed countries, its application is new in Iran and data on the health status of the most ecologically important rivers in Iran is scarce. The present study aimed at monitoring and assessing the ecological quality of Aghlagan river, northwest of Iran, using integrated physicochemical-biological approaches. A total of 14,423 samplings were carried out from the headwater to downstream sites at four stations (S1, 2, 3, 4) by a Surber sampler (30 cm × 30 cm) from June 2018 to April 2019. The results obtained from macroinvertebrate biotic index revealed that the genera of Gammarus (Amphipoda) and Baetis (Ephemeroptera) were the most abundant in all seasons. The PAST software was applied to analyze the diversity indices (Shannon-Weiner diversity, Evenness, and Simpson indices). Based on the cluster analysis, S3 established the least similarity to other stations. The average frequency of each macroinvertebrate species was determined by one-factor analysis of similarities (ANOSIM). In accordance with canonical correspondence analysis (CCA), temperature and phosphate were found as the dominant factors effecting the macroinvertebrate assemblage and distribution. Moreover, the results obtained from the biological indices concluded very good quality of S4 by Helsinhoff and EPT indices and fair quality using BMWP index. The data on the macrobenthos assemblage and dynamics in the Aghlagan river across a hydraulic gradient provided useful information on water management efforts that assist us to find sustainable solutions for the enhanced quality of the river by balancing environmental and human values.
Ionizing radiation from radionuclides impacts marine aquatic biota and the scope of investigation must be wider than just invertebrates. We intend to detail and illustrate numerous biological effects that occur in both aquatic vertebrates and invertebrates, at various dose rates from all three kinds of ionizing radiation. The characteristics of radiation sources and dosages that would most effectively generate the intended effects in the irradiated organism were assessed once the biological differentiation between vertebrates and invertebrates was determined through multiple lines of evidence. We contend that invertebrates are still more radiosensitive than vertebrates, due to their small genome size, rapid reproduction rates and lifestyle, which help them to compensate for the effects of radiation induced declines in fecundity, life span and individual health. We also identified various research gaps in this field and suggest future directions to be investigated to remedy the lack of data available in this area.
Marine ecosystems in Antarctica are thought to be highly vulnerable to aspects of dynamic global climate change, such as warming. In deep-water ecosystems, there has been little physico-chemical change in seawater there for millions of years. Thus, some benthic organisms are likely to include strong potential indicators of environmental changes and give early warnings of ecosystem vulnerability. In 2017 we sampled deep-water benthic assemblages across a continental shelf trough in outer Marguerite Bay, West Antarctic Peninsula (WAP). This region is one of the hotspots of climate-related physical change on Earth in terms of seasonal sea ice loss. Video and images of the seabed were captured at 5 stations, each with 20 replicates. From these, we identified substratum types and biota to functional groups to assess variability in benthic composition and diversity. We also collected coincident environmental information on depth, temperature, salinity, oxygen and chlorophyll-a (using a CTD). Climax sessile suspension feeders were the most spatially dominant group, comprising 539 individuals (39% of total abundance) that included Porifera, Brachiopoda and erect Bryozoa. ST5, the shallowest station was functionally contrasting with other stations. This functional difference was also influenced by hard substrata of ST5, which is typically preferred by climax sessile suspension feeders. Depth (or an associated driver) and hard substrates were the most apparent key factor which functionally characterised the communities, shown by the abundance of climax sessile suspension feeders. Our study showed that non-invasive, low taxonomic skill requirement, functional group approach is not only valuable in providing functional perspective on environment status, but such groupings also proved to be sensitive to environmental variability.
The diversity and abundance of macroinvertebrate shredders were investigated in 52 forested streams (local scale) from nine catchments (regional scale) covering a large area of peninsular Malaysia. A total of 10,642 individuals of aquatic macroinvertebrates were collected, of which 18.22% were shredders. Biodiversity of shredders was described by alpha (αaverage), beta (β) and gamma diversity (γ) measures. We found high diversity and abundance of shredders in all catchments, represented by 1,939 individuals (range 6-115 and average per site of 37.29±3.48 SE) from 31 taxa with 2-13 taxa per site (αaverage=6.98±0.33 SE) and 10-15 taxa per catchment (γ=13.33±0.55 SE). At the local scale, water temperature, stream width, depth and altitude were correlated significantly with diversity (Adj-R2=0.205). Meanwhile, dissolved oxygen, stream velocity, water temperature, stream width and altitude were correlated to shredder abundance (Adj-R2=0.242). At regional scale, however, water temperature was correlated negatively with β and γ diversity (r2=0.161 and 0.237, respectively) as well as abundance of shredders (r2=0.235). Canopy cover was correlated positively with β diversity (r2=0.378) and abundance (r2=0.266), meanwhile altitude was correlated positively with β (quadratic: r2=0.175), γ diversity (quadratic: r2=0.848) as well as abundance (quadratic: r2=0.299). The present study is considered as the first report describing the biodiversity and abundance of shredders in forested headwater streams across a large spatial scale in peninsular Malaysia. We concluded that water temperature has a negative effect while altitude showed a positive relationship with diversity and abundance of shredders. However, it was difficult to detect an influence of canopy cover on shredder diversity.
Marine invertebrates, such as oysters, mussels, clams, scallop, jellyfishes, squids, prawns, sea cucumbers and sea squirts, are consumed as foods. These edible marine invertebrates are sources of potent bioactive peptides. The last two decades have seen a surge of interest in the discovery of antioxidant peptides from edible marine invertebrates. Enzymatic hydrolysis is an efficient strategy commonly used for releasing antioxidant peptides from food proteins. A growing number of antioxidant peptide sequences have been identified from the enzymatic hydrolysates of edible marine invertebrates. Antioxidant peptides have potential applications in food, pharmaceuticals and cosmetics. In this review, we first give a brief overview of the current state of progress of antioxidant peptide research, with special attention to marine antioxidant peptides. We then focus on 22 investigations which identified 32 antioxidant peptides from enzymatic hydrolysates of edible marine invertebrates. Strategies adopted by various research groups in the purification and identification of the antioxidant peptides will be summarized. Structural characteristic of the peptide sequences in relation to their antioxidant activities will be reviewed. Potential applications of the peptide sequences and future research prospects will also be discussed.
A study of the impacts of anthropogenic activities on the distribution and biodiversity of benthic macroinvertebrates and water quality of the Langat River (Peninsular Malaysia) was conducted. Four pristine stations from the upstream and 4 stations at the downstream receiving anthropogenic impacts were selected along the river. For 4 consecutive months (March-June 1999), based on the Malaysian DOE (Malaysia Environmental Quality Report 2000, Department of Environment, Ministry of Science, Technology and Environment Malaysia. Maskha Sdn. Bhd. Kuala Lumpur, 86pp; Malaysia Environmental Quality Report 2001, Department of Environment, Ministry of Science, Technology and the Environment Malaysia) water quality index classes, the upstream stations recorded significantly (P<0.05) higher Biological Monitoring Working Party scores and better water quality indices than those of the downstream. The total number of macrobenthic taxa and their overall richness indices and diversity indices were significantly (P<0.05) higher at the upstream stations (54 taxa) than at the downstream stations (5 taxa). The upstream of the Langat River was dominated by Ephemeroptera and chironomid dipterans while other orders found in small quantities included Trichoptera, Diptera, Plecoptera, Odonata, Ephemeraptera, Coleoptera, and Gastropoda. On the other hand, the downstream of the river was mainly inhabited by the resistant Oligochaeta worms Limnodrilus spp. and Branchiodrilus sp. and Hirudinea in small numbers. The relationships between the physicochemical and the macrobenthic data were investigated by Pearson correlation analysis and multiple stepwise regression analysis. These statistical analyses showed that the richness and diversity indices were generally influenced by the total suspended solids and the conductivity of the river water. This study also highlighted the impacts of anthropogenic land-based activities such as urban runoff on the distribution and species diversity of macrobenthic invertebrates in the downstream of the Langat River. The data obtained in this study supported the use of the bioindicator concept for Malaysian rivers. Some sensitive (Trichopteran caddisflies and Ephemeraptera) and resistant species (Oligochaeta such as Limnodrilus spp.) are identified as potential bioindicators of clean and polluted river ecosystems, respectively, for Malaysian rivers.
The determinant factors for macroinvertebrate assemblages in river ecosystems are varied and are unique and specific to the type of macroinvertebrate family. This study aims to assess the determinant factors for macroinvertebrate assemblages in a recreational river. The study was conducted on the Ulu Bendul River, Negeri Sembilan, Malaysia. A total of ten sampling stations were selected. The research methodology included (1) water quality measurement, (2) habitat characterization, and (3) macroinvertebrate identification and distribution analysis. The statistical analysis used in this study was canonical correspondence analysis (CCA) to represent the relationship between the environmental factors and macroinvertebrate assemblages in the recreational river. This study found that most of the families of macroinvertebrates were very dependent on the temperature, DO, NH3-N, type of riverbed, etc. All of these factors are important for the survival of the particular type of macroinvertebrate, plus they are also important for selecting egg-laying areas and providing suitable conditions for the larvae to grow. This study advises that improved landscape design for watershed management be implemented in order to enhance water quality and physical habitats, and hence the protection and recovery of the macroinvertebrate biodiversity.
This study evaluates the impact of anthropogenic activities on the Shahrood River using water physico-chemical variables and macroinvertebrates data sets obtained over a period of 12 months between February 2012 and February 2013 at 8 sampling sites. Biotic indices i.e. FBI and BMWP based on macroinvertebrates and physico-chemical indices (MPI, HPI and NSF-WQI) were employed to evaluate the water quality status in connection with natural- and human-induced pressures. Based on physico-chemical indices, water quality was categorized as low polluted level and it is suitable for drinking purposes. The water quality based on biotic indices was related to the anthropic activities; a clear deterioration of the water quality was observed from upstream to downstream sites. The water quality along the river changed from very good (class I; reference sites) to good (class II; midstream sites) and turned into moderate (class III) and poor (class IV) quality (downstream sites). These findings indicate that biotic indices are more powerful indicators in assessing water quality than physico-chemical indices. Allocapnia, Glossosoma and Hesperoperla were exclusively related to least disturbed sites, and Naididae, Orthocladiinae and Ecdyonurus were found in sites showing notable degradation. Our results recommended that the use of macroinvertebrates could be employed as a cost-effective tool for biomonitoring and controlling of polluted riverine ecosystems in the Middle East. Finally, the results from this study may be useful not only for developing countries, but also for any organization struggling to use macroinvertebrate based indices with restricted financial resources and knowledge.
Ants are diverse and abundant, especially in tropical ecosystems. They are often cited as the agents of key ecological processes, but their precise contributions compared with other organisms have rarely been quantified. Through the removal of food resources from the forest floor and subsequent transport to nests, ants play an important role in the redistribution of nutrients in rainforests. This is an essential ecosystem process and a key energetic link between higher trophic levels, decomposers and primary producers. We used the removal of carbohydrate, protein and seed baits as a proxy to quantify the contribution that ants, other invertebrates and vertebrates make to the redistribution of nutrients around the forest floor, and determined to what extent there is functional redundancy across ants, other invertebrate and vertebrate groups. Using a large-scale, field-based manipulation experiment, we suppressed ants from c. 1 ha plots in a lowland tropical rainforest in Sabah, Malaysia. Using a combination of treatment and control plots, and cages to exclude vertebrates, we made food resources available to: (i) the whole foraging community, (ii) only invertebrates and (iii) only non-ant invertebrates. This allowed us to partition bait removal into that taken by vertebrates, non-ant invertebrates and ants. Additionally, we examined how the non-ant invertebrate community responded to ant exclusion. When the whole foraging community had access to food resources, we found that ants were responsible for 52% of total bait removal whilst vertebrates and non-ant invertebrates removed the remaining 48%. Where vertebrates were excluded, ants carried out 61% of invertebrate-mediated bait removal, with all other invertebrates removing the remaining 39%. Vertebrates were responsible for just 24% of bait removal and invertebrates (including ants) collectively removed the remaining 76%. There was no compensation in bait removal rate when ants and vertebrates were excluded, indicating low functional redundancy between these groups. This study is the first to quantify the contribution of ants to the removal of food resources from rainforest floors and thus nutrient redistribution. We demonstrate that ants are functionally unique in this role because no other organisms compensated to maintain bait removal rate in their absence. As such, we strengthen a growing body of evidence establishing ants as ecosystem engineers, and provide new insights into the role of ants in maintaining key ecosystem processes. In this way, we further our basic understanding of the functioning of tropical rainforest ecosystems.
Understanding the drivers of community structure is fundamental for adequately managing ecosystems under global change. Here we used a large dataset of eighty-four headwater stream sites in three catchments in the Eastern Highlands of Zimbabwe, which represent a variety of abiotic conditions and levels of impairment, to examine the drivers of benthic macroinvertebrate community structure. We focused our assessment on macroinvertebrate family level community composition and functional feeding group classifications. Taxonomic richness was weakly positively correlated with ammonium, phosphates and pH, and weakly negatively correlated with detrital cover and dissolved oxygen. Measured abiotic variables, however, had limited influence on both macroinvertebrate diversity and functional feeding group structure, with the exception of ammonium, channel width and phosphates. This reflected the fact that many macroinvertebrate families and functional feeding guilds were well represented across a broad range of habitats. Predatory macroinvertebrates were relatively abundant, with collector-filterers having the lowest relative abundances. The findings of the study suggest that for certain ecological questions, a more detailed taxonomic resolution may be required to adequately understand the ecology of aquatic macroinvertebrates within river systems. We further recommend management and conservation initiatives on the Save River system, which showed significant impact from catchment developmental pressures, such as urbanisation, agriculture and illegal mining.
Neuroscience research and training in many African countries are difficult due to funding and infrastructure deficit. This has resulted in few neuroscientists within Africa. However, invertebrates such as Drosophila and Caenorhabditis elegans could provide the perfect answer to these difficulties. These organisms are cheap, easy to handle and offer a comparable advantage over vertebrates in neuroscience research modeling because they have a simple nervous system and exhibit well-defined behaviors. Studies using invertebrates have helped to understand neurosciences and the complexes associated with it. If Africa wants to catch up with the rest of the world in neuroscience research, it needs to employ this innovative cost-effective approach in its research. To improve invertebrate neuroscience within the Africa continent, the authors advocated the establishment of invertebrate research centers either at regional or national level across Africa. Finally, there is also a need to provide public funding to consolidate the gains that have been made by not-for-profit international organizations over the years.
Serratia marcescens is an opportunistic bacterial pathogen with broad range of host ranging from vertebrates, invertebrates and plants. S. marcescens strain W2.3 was isolated from a diseased tilapia fish and it was suspected to be the causal agent for the fish disease as virulence genes were found within its genome. In this study, for the first time, the genome sequences of S. marcescens strain W2.3 were sequenced using the Illumina MiSeq platform.
A study of the major Arthropoda taxa of invertebrates recolonizing Saraca roots occurring on various substrates and under various water velocities was carried out in the upper reaches of the Gombak River. The sites for the recolonization experiments were selected in the fast and slow flowing sections of rocks and boulders, sand and gravel and mud and silt biotopes. The Hydropsychidae and the Nemouridae were the pioneer recolonizers of Saraea roots in the fast flowing sections of the stream whereas the Ptilodactylidae and the Caenidae were the pioneer recolonizers in the slow flowing sections of the stream.
Suatu kajian telah dijalankan bagi menentukan takson utama invertebrata Arthropoda yang mengkoloni semula akar Saraca yang didapati pada pelbagai substrat dan pada kelajuan air yang berbeza di bahagian hulu Sungai Gombak. Tapak-tapak untuk ujikaji pengkolonian-semula telah dipilih pada bahagian laju dan perlahan biotop batuan besar dan sederhana, pasir dan batuan kecil, dan lumpur dan kelodak. Hydropsychidae dan Nemouridae adalah pengkoloni perintis pada akar Saraca di bahagian aliran laju sungai sementara Ptilodactylidae dan Caeflidae adalah pengkoloni perintis di bahagian aliran perlahan sungai itu.
Plant litter is the major source of energy and nutrients in stream ecosystems and its decomposition is vital for ecosystem nutrient cycling and functioning. Invertebrates are key contributors to instream litter decomposition, yet quantification of their effects and drivers at the global scale remains lacking. Here, we systematically synthesized data comprising 2707 observations from 141 studies of stream litter decomposition to assess the contribution and drivers of invertebrates to the decomposition process across the globe. We found that (1) the presence of invertebrates enhanced instream litter decomposition globally by an average of 74%; (2) initial litter quality and stream water physicochemical properties were equal drivers of invertebrate effects on litter decomposition, while invertebrate effects on litter decomposition were not affected by climatic region, mesh size of coarse-mesh bags or mycorrhizal association of plants providing leaf litter; and (3) the contribution of invertebrates to litter decomposition was greatest during the early stages of litter mass loss (0-20%). Our results, besides quantitatively synthesizing the global pattern of invertebrate contribution to instream litter decomposition, highlight the most significant effects of invertebrates on litter decomposition at early rather than middle or late decomposition stages, providing support for the inclusion of invertebrates in global dynamic models of litter decomposition in streams to explore mechanisms and impacts of terrestrial, aquatic, and atmospheric carbon fluxes.
Abundance and diversity of benthic macroinvertebrates as well as physico-chemical parameters were investigated in five rivers of the Juru River Basin in northern Peninsula Malaysia: Ceruk Tok Kun River (CTKR), Pasir River (PR), Permatang Rawa River (PRR), Kilang Ubi River (KUR), and Juru River (JR). The physico-chemical parameters and calculated water quality index (WQI) were significantly different among the investigated rivers (ANOVA, P<0.05). The WQI classified CTKR, PR, and JR into class III (slightly polluted). However, PRR and KUR fell into class IV (polluted). High diversity and abundance of macroinvertebrates, especially the intolerant taxa, Ephemeroptera, Plecoptera, and Trichoptera, were observed in the least polluted river, CTKR. Decreasing abundance of macroinvertebrates followed the deterioration of river water quality with the least number of the most tolerant taxa collected from PR. On the basis of composition and sensitivity of macroinvertebrates to pollutants in each river, the highest Biological Monitoring Working Party (BMWP) index score of 93 was reported in CTKR (good water quality). BMWP scores in PRR and JR were 38.7 and 20.1, respectively, classifying both of them into "moderate water quality" category. Poor water quality was reported in PR and KUR. The outcome of the multivariate analysis (CCA) was highly satisfactory, explaining 43.32% of the variance for the assemblages of macroinvertebrates as influenced by 19 physical and chemical variables. According to the CCA model, we assert that there were three levels of stresses on macroinvertebrate communities in the investigated rivers: Level 1, characterized of undisturbed or slightly polluted as in the case of CTKR; Level 2, characterized by a lower habitat quality (the JR) compared to the CTKR; and Level 3 showed severe environmental stresses (PRR, PR, and KUR) primarily contributed by agricultural, industrial, and municipal discharges.
Matched MeSH terms: Invertebrates/classification*; Invertebrates/growth & development
This article provides raw datasets of the coral reefs status in Pulau Bidong, southern of South China Sea before and after being strike by the tropical storm Pabuk on January 2019. Data were collected using a rapid coral survey method called Coral Video Transect (CVT) technique. The data were collected along a 100 m transect line set up parallel to the shoreline and at a constant depth. In total, eight transects were surveyed during both periods (pre - August 2016, post - March 2019). Back in laboratory, the footage was then extracted into non-overlapping frames or still images prior to image analysis using Coral Point Count with Excel Extension (CPCe) software. The benthic coral reefs relative percentage cover was automatically generated after the image analysis and represented by five major categories; live coral (C), algae (ALG), other invertebrates (OT), dead coral (DC), and sand silt and rock (SR). Live coral cover was identified up to the genus level. This raw dataset was used in this article. The data provided in this article could be of significant use for future studies especially on coral recovery after the natural disturbances. It can provide a baseline assessment especially for coral reefs management as well as to comprehend changes in coral health status in the face of natural and anthropogenic disturbances. The data presented here support the information in the article Safuan et al. (2020).
Sea cucumbers, blind cylindrical marine invertebrates that live in the ocean intertidal beds have more than thousand species available of varying morphology and colours throughout the world. Sea cucumbers have long been exploited in traditional treatment as a source of natural medicinal compounds. Various nutritional and therapeutic values have been linked to this invertebrate. These creatures have been eaten since ancient times and purported as the most commonly consumed echinoderms. Some important biological activities of sea cucumbers including anti-hypertension, anti-inflammatory, anti-cancer, anti-asthmatic, anti-bacterial and wound healing. Thus, this short review comes with the principal aim to cover the profile, taxonomy, together with nutritional and medicinal properties of sea cucumbers.
Stable isotope analysis has been used extensively to establish trophic relationships in many ecosystems. Present study utilised stable isotope signatures of carbon and nitrogen to identify trophic structure of aquatic food web in river and rice field ecosystems in Perak, northern peninsular Malaysia. The mean δ(13)C values of all producers ranged from -35.29 ± 0.21 to -26.00 ± 0.050‰. The greatest δ(15)N values noted was in zenarchopterid fish with 9.68 ± 0.020‰. The δ(15)N values of aquatic insects ranged between 2.59 ± 0.107 in Elmidae (Coleoptera) and 8.11 ± 0.022‰ in Nepidae (Hemiptera). Correspondingly, with all the δ(13)C and δ(15)N values recorded, it can be deduced that there are four trophic levels existed in the freshwater ecosystems which started with the producer (plants), followed by primary consumer (aquatic insects and non-predatory fish), secondary consumer (invertebrate predators) and lastly tertiary consumer (vertebrate predators).