Displaying publications 1 - 20 of 47 in total

Abstract:
Sort:
  1. Chellappan DK, Paudel KR, Tan NW, Cheong KS, Khoo SSQ, Seow SM, et al.
    Mitochondrion, 2022 Nov;67:15-37.
    PMID: 36176212 DOI: 10.1016/j.mito.2022.09.003
    Mitochondria are one of the basic essential components for eukaryotic life survival. It is also the source of respiratory ATP. Recently published studies have demonstrated that mitochondria may have more roles to play aside from energy production. There is an increasing body of evidence which suggest that mitochondrial activities involved in normal and pathological states contribute to significant impact to the lung airway morphology and epithelial function in respiratory diseases such as asthma, COPD, and lung cancer. This review summarizes the pathophysiological pathways involved in asthma, COPD, lung cancer and highlights potential treatment strategies that target the malfunctioning mitochondria in such ailments. Mitochondria are responsive to environmental stimuli such as infection, tobacco smoke, and inflammation, which are essential in the pathogenesis of respiratory diseases. They may affect mitochondrial shape, protein production and ultimately cause dysfunction. The impairment of mitochondrial function has downstream impact on the cytosolic components, calcium control, response towards oxidative stress, regulation of genes and proteins and metabolic activities. Several novel compounds and alternative medicines that target mitochondria in asthma and chronic lung diseases have been discussed here. Moreover, mitochondrial enzymes or proteins that may serve as excellent therapeutic targets in COPD are also covered. The role of mitochondria in respiratory diseases is gaining much attention and mitochondria-based treatment strategies and personalized medicine targeting the mitochondria may materialize in the near future. Nevertheless, more in-depth studies are urgently needed to validate the advantages and efficacy of drugs that affect mitochondria in pathological states.
    Matched MeSH terms: Lung/metabolism
  2. Looi LM
    Malays J Pathol, 1999 Jun;21(1):29-35.
    PMID: 10879276
    A review of routine histopathological samples and autopsies examined at the Department of Pathology, University of Malaya revealed 15 cases of amyloidosis of the lung. Two were localized depositions limited to the lung while in the remainder, lung involvement was part of the picture of systemic amyloidosis. Both cases of localized amyloidosis presented with symptomatic lung/bronchial masses and a clinical diagnosis of tumour. Histology revealed "amyloidomas" associated with heavy plasma cell and lymphocytic infiltration and the presence of multinucleated giant cells. In both cases, the amyloid deposits were immunopositive for lambda light chains and negative for kappa chains and AA protein. One was a known systemic lupus erythematosus patient with polyclonal hypergammaglobulinaemia. The other patient was found to have plasma cell dyscrasia with monoclonal IgG lambda gammopathy. Both patients did not develop systemic amyloidosis. In contrast, lung involvement in systemic AA amyloidosis was not obvious clinically or macroscopically but was histologically evident in 75% of cases subjected to autopsy. Amyloid was detected mainly in the walls of arterioles and small vessels, and along the alveolar septa. It was less frequently detected in the pleura, along the basement membrane of the bronchial epithelium and around bronchial glands. In one case of systemic AL amyloidosis associated with multiple myeloma, an "amyloidoma" occurred in the subpleural region reminiscent of localized amyloidosis. These cases pose questions on (1) whether localized "tumour-like" amyloidosis is a forme fruste of systemic AL amyloidosis and (2) the differing pattern of tissue deposition of different chemical types of amyloid fibrils, with the suggestion that light chain amyloid has a greater tendency to nodular deposition than AA amyloid.
    Matched MeSH terms: Lung/metabolism*
  3. Ashique S, De Rubis G, Sirohi E, Mishra N, Rihan M, Garg A, et al.
    Chem Biol Interact, 2022 Dec 01;368:110231.
    PMID: 36288778 DOI: 10.1016/j.cbi.2022.110231
    The human microbiota is fundamental to correct immune system development and balance. Dysbiosis, or microbial content alteration in the gut and respiratory tract, is associated with immune system dysfunction and lung disease development. The microbiota's influence on human health and disease is exerted through the abundance of metabolites produced by resident microorganisms, where short-chain fatty acids (SCFAs) represent the fundamental class. SCFAs are mainly produced by the gut microbiota through anaerobic fermentation of dietary fibers, and are known to influence the homeostasis, susceptibility to and outcome of many lung diseases. This article explores the microbial species found in healthy human gastrointestinal and respiratory tracts. We investigate factors contributing to dysbiosis in lung illness, and the gut-lung axis and its association with lung diseases, with a particular focus on the functions and mechanistic roles of SCFAs in these processes. The key focus of this review is a discussion of the main metabolites of the intestinal microbiota that contribute to host-pathogen interactions: SCFAs, which are formed by anaerobic fermentation. These metabolites include propionate, acetate, and butyrate, and are crucial for the preservation of immune homeostasis. Evidence suggests that SCFAs prevent infections by directly affecting host immune signaling. This review covers the various and intricate ways through which SCFAs affect the immune system's response to infections, with a focus on pulmonary diseases including chronic obstructive pulmonary diseases, asthma, lung cystic fibrosis, and tuberculosis. The findings reviewed suggest that the immunological state of the lung may be indirectly influenced by elements produced by the gut microbiota. SCFAs represent valuable potential therapeutic candidates in this context.
    Matched MeSH terms: Lung/metabolism
  4. Mohamed Sofian Z, Harun N, Mahat MM, Nor Hashim NA, Jones SA
    Eur J Pharm Biopharm, 2021 Nov;168:53-61.
    PMID: 34455038 DOI: 10.1016/j.ejpb.2021.08.003
    Transiently associating amines with therapeutic agents through the formation of ion-pairs has been established both in vitro and in vivo as an effective means to systemically direct drug delivery to the lung via the polyamine transport system (PTS). However, there remains a need to better understand the structural traits required for effective PTS uptake of drug ion-pairs. This study aimed to use a structurally related series of amine counterions to investigate how they influenced the stability of theophylline ion-pairs and their active uptake in A549 cells. Using ethylamine (mono-amine), ethylenediamine (di-amine), spermidine (tri-amine) and spermine (tetra-amine) as counterions the ion-pair affinity was shown to increase as the number of protonated amine groups in the counterion structure increased. The mono and diamines generated a single hydrogen bond and the weakest ion-pair affinities (pKFTIR: 1.32 ± 0.04 and 1.43 ± 0.02) whereas the polyamines produced two hydrogen bonds and thus the strongest ion-pair affinities (pKFTIR: 1.93 ± 0.05 and 1.96 ± 0.04). In A549 cells depleted of endogenous polyamines using α-difluoromethylornithine (DFMO), the spermine-theophylline uptake was significantly increased (p 
    Matched MeSH terms: Lung/metabolism*
  5. Dabbagh A, Abu Kasim NH, Yeong CH, Wong TW, Abdul Rahman N
    J Aerosol Med Pulm Drug Deliv, 2018 06;31(3):139-154.
    PMID: 29022837 DOI: 10.1089/jamp.2017.1382
    Targeted delivery of chemotherapeutics through the respiratory system is a potential approach to improve drug accumulation in the lung tumor, while decreasing their negative side effects. However, elimination by the pulmonary clearance mechanisms, including the mucociliary transport system, and ingestion by the alveolar macrophages, rapid absorption into the blood, enzymatic degradation, and low control over the deposition rate and location remain the main complications for achieving an effective pulmonary drug delivery. Therefore, particle-based delivery systems have emerged to minimize pulmonary clearance mechanisms, enhance drug therapeutic efficacy, and control the release behavior. A successful implementation of a particle-based delivery system requires understanding the influential parameters in terms of drug carrier, inhalation technology, and health status of the patient's respiratory system. This review aims at investigating the parameters that significantly drive the clinical outcomes of various particle-based pulmonary delivery systems. This should aid clinicians in appropriate selection of a delivery system according to their clinical setting. It will also guide researchers in addressing the remaining challenges that need to be overcome to enhance the efficiency of current pulmonary delivery systems for aerosols.
    Matched MeSH terms: Lung/metabolism*
  6. Janardhana Rao G
    Asian Pac J Allergy Immunol, 1997 Jun;15(2):77-80.
    PMID: 9346270
    Deficiency of surfactant in alveoli leads to increased resistance to breathing. Histamine is a mediator in allergic respiratory diseases. Though the bronchoconstrictor effect of histamine is well recognised, histamine may have additional actions that contribute to pathogenesis in these diseases. The present study aimed to observe the effect of histamine on lecithin, a major component of alveolar surfactant. Lecithin content in broncho-alveolar lavage (BAL) fluid of healthy adult male rats was estimated by enzymatic method using Boehringer-Mannheim kits. Lecithin content in these control animals was compared with that in three groups of healthy adult male rats following subcutaneous administration of 0.06 mg of histamine diphosphate at 10 minutes, 30 minutes and 60 minutes intervals, respectively. A significant reduction in lecithin levels in BAL fluid was observed up to one hour after administration of histamine. The results indicate a possible additional action of histamine in the pathogenesis of allergic respiratory diseases.
    Matched MeSH terms: Lung/metabolism
  7. Nabishah BM, Merican Z, Morat PB, Alias AK, Khalid BA
    Gen. Pharmacol., 1990;21(6):935-8.
    PMID: 2177714
    1. Steroid hormones have been shown to regulate the concentration of adrenergic and muscarinic receptors in many tissues. 2. The cyclic adenosine 3',5'-monophosphate (cAMP) content in rat lung tissues in response to either dexamethasone, corticosterone, deoxycorticosterone or progesterone for 7 days were measured following intraperitoneal injection of isoprenaline just before sacrificed. 3. There was a significant increase in cAMP level (P less than 0.001) in dexamethasone and corticosterone-treated rats compared to controls that received isoprenaline alone. 4. Pretreatment with deoxycorticosterone and progesterone suppressed the increase in cAMP in response to isoprenaline. 5. The effect of glucocorticoids in causing bronchodilatation in asthmatic patients is partly due to the restoration of adenyl cyclase responsiveness to beta-agonist.
    Matched MeSH terms: Lung/metabolism*
  8. Thakur AK, Chellappan DK, Dua K, Mehta M, Satija S, Singh I
    Expert Opin Ther Pat, 2020 May;30(5):375-387.
    PMID: 32178542 DOI: 10.1080/13543776.2020.1741547
    Introduction: Pulmonary route is one of the preferred routes for the administration of therapeutically active agents for systemic as well as localized delivery. Chronic obstructive pulmonary disease (COPD), bronchial asthma, pneumonia, pulmonary hypertension, bronchiolitis, lung cancer, and tuberculosis are the major chronic diseases associated with the pulmonary system. Knowledge about the affecting factors, namely, the etiology, pathophysiology, and the various barriers (mechanical, chemical, immunological, and behavioral) in pulmonary drug delivery is essential to develop an effective drug delivery system. Formulation strategies and mechanisms of particle deposition in the lungs also play an important role in designing a suitable delivery system.Areas covered: In the present paper, various drug delivery strategies, viz. nanoparticles, microparticles, liposomes, powders, and microemulsions have been discussed systematically, from a patent perspective.Expert opinion: Patent publications on formulation strategies have been instrumental in the evolution of new techniques and technologies for safe and effective treatment of pulmonary diseases. New delivery systems are required to be simple/reproducible/scalable/cost-effective scale for manufacturing ability and should be safe/effective/stable/controllable for meeting quality and regulatory compliance.
    Matched MeSH terms: Lung/metabolism*
  9. Gaber NN, Darwis Y, Peh KK, Tan YT
    J Nanosci Nanotechnol, 2006 10 20;6(9-10):3095-101.
    PMID: 17048523
    The potential of using poly-(ethylene oxide)-block-distearoyl phosphatidyl-ethanolamine (mPEG-DSPE) polymer to prepare BDP-loaded micelles with high entrapment efficiency and mass median aerodynamic diameter of less than 5 microm demonstrating sustained release properties was evaluated. The result showed that lyophilized BDP-loaded polymeric micelles with entrapment efficiency of more than 96% could be achieved. Entrapment efficiency was affected by both the drug to polymer molar ratio and the amount of drug used. Investigation using FTIR and DSC confirmed that there was no chemical or physical interaction and the drug was molecularly dispersed within the micelles. TEM images showed that the drug-loaded polymeric micelles were spherical in shape with multivesicular morphology. Further analysis by photon correlation spectroscopy indicated that the particle size of the BDP-loaded micelles was about 22 nm in size. In vitro drug release showed a promising sustained release profile over six days following the Higuchi model. The mass median aerodynamic diameter and fine particle fraction were suitable for pulmonary delivery. Moreover, the small amount of deposited drug in the induction port (throat deposition) suggested possible reduction in incidence of oropharyngeal candidiasis, a side effect normally associated with inhaled corticosteroids therapy. The high encapsulation efficiency, comparable inhalation properties, sustained release behavior together with biocompatibility nature of the polymer support the potential of BDP-loaded polymeric micelles as a versatile delivery system to be used in the treatment of asthma and chronic obstructive pulmonary disease.
    Matched MeSH terms: Lung/metabolism
  10. Vadivelu J, Vellasamy KM, Thimma J, Mariappan V, Kang WT, Choh LC, et al.
    PLoS Negl Trop Dis, 2017 01;11(1):e0005241.
    PMID: 28045926 DOI: 10.1371/journal.pntd.0005241
    BACKGROUND: During infection, successful bacterial clearance is achieved via the host immune system acting in conjunction with appropriate antibiotic therapy. However, it still remains a tip of the iceberg as to where persistent pathogens namely, Burkholderia pseudomallei (B. pseudomallei) reside/hide to escape from host immune sensors and antimicrobial pressure.

    METHODS: We used transmission electron microscopy (TEM) to investigate post-mortem tissue sections of patients with clinical melioidosis to identify the localisation of a recently identified gut microbiome, B. pseudomallei within host cells. The intranuclear presence of B. pseudomallei was confirmed using transmission electron microscopy (TEM) of experimentally infected guinea pig spleen tissues and Live Z-stack, and ImageJ analysis of fluorescence microscopy analysis of in vitro infection of A549 human lung epithelial cells.

    RESULTS: TEM investigations revealed intranuclear localization of B. pseudomallei in cells of infected human lung and guinea pig spleen tissues. We also found that B. pseudomallei induced actin polymerization following infection of A549 human lung epithelial cells. Infected A549 lung epithelial cells using 3D-Laser scanning confocal microscopy (LSCM) and immunofluorescence microscopy confirmed the intranuclear localization of B. pseudomallei.

    CONCLUSION: B. pseudomallei was found within the nuclear compartment of host cells. The nucleus may play a role as an occult or transient niche for persistence of intracellular pathogens, potentially leading to recurrrent episodes or recrudescence of infection.

    Matched MeSH terms: Lung/metabolism
  11. Mohtar N, Taylor KM, Sheikh K, Somavarapu S
    Eur J Pharm Biopharm, 2017 Apr;113:1-10.
    PMID: 27916704 DOI: 10.1016/j.ejpb.2016.11.036
    This study has investigated complexation of fisetin, a natural flavonoid, with three types of cyclodextrins to improve its solubility. Sulfobutylether-β-cyclodextrin (SBE-β-CD) showed the highest complexation efficiency while maintaining the in vitro antioxidant activity of fisetin. Addition of 20%v/v ethanol in water improved the amount of solubilized fisetin in the complex 5.9-fold compared to the system containing water alone. Spray drying of fisetin-SBE-β-CD complex solution in the presence of ethanol produced a dry powder with improved aerosolization properties when delivered from a dry powder inhaler, indicated by a 2-fold increase in the fine particle fraction (FPF) compared to the powder produced from the complex solution containing water alone. The pitted morphological surface of these particles suggested a more hollow internal structure, indicating a lighter and less dense powder. Incorporation of 20%w/w leucine improved the particle size distribution of the powder and further increased the FPF by 2.3-fold. This formulation also showed an EC50 value equivalent to fisetin alone in the A549 cell line. In conclusion, an inhalable dry powder containing fisetin-SBE-β-CD complex was successfully engineered with an improved aqueous solubility of fisetin. The dry powder may be useful to deliver high amounts of fisetin to the deep lung region for therapeutic purposes.
    Matched MeSH terms: Lung/metabolism*
  12. Alhajj N, Chee CF, Wong TW, Rahman NA, Abu Kasim NH, Colombo P
    Expert Opin Drug Deliv, 2018 12;15(12):1223-1247.
    PMID: 30422017 DOI: 10.1080/17425247.2018.1547280
    INTRODUCTION: Pulmonary drug delivery is organ-specific and benefits local drug action for lung cancer. The use of nanotechnology and targeting ligand enables cellular-specific drug action. Combination approaches increase therapeutic efficacy and reduce adverse effects of cancer chemotherapeutics that have narrow therapeutic index window and high cytotoxicity levels. The current progress of inhaled cancer chemotherapeutics has not been examined with respect to targeting strategy and clinical application potential.

    AREAS COVERED: This review examines the state of the art in passive (processing and formulation) and active (targeting ligand and receptor binding) technologies in association with the use of nanocarrier to combat lung cancer. It highlights routes to equip nanocarrier with targeting ligands as a function of the chemistry of participating biomolecules and challenges in inhalational nanoproduct development and clinical applications. Both research and review articles were examined using the Scopus, Elsevier, Web of Science, Chemical Abstracts, Medline, CASREACT, CHEMCATS, and CHEMLIST database with the majority of information retrieved between those of 2000-2018.

    EXPERT COMMENTARY: The therapeutic efficacy of targeting ligand-decorated nanocarriers needs to be demonstrated in vivo in the form of finished inhalational products. Their inhalation efficiency and medical responses require further examination. Clinical application of inhaled nanocancer chemotherapeutics is premature.

    Matched MeSH terms: Lung/metabolism
  13. Nabishah BM, Khalid BA, Morat PB, Alias AK, Zainuddin M
    J Endocrinol, 1992 Jul;134(1):73-6.
    PMID: 1323640
    The possible role of cyclic adenosine 3',5'-monophosphate (cAMP) in mediating the action of steroid hormones was investigated using the rat lung. Male rats were adrenalectomized and treated with olive oil, dexamethasone, corticosterone, deoxycorticosterone (DOC) or progesterone. At the end of 10 days, 100 micrograms isoprenaline/kg was injected intraperitoneally 5 min before the animals were killed to stimulate cAMP production. Adrenalectomy significantly decreased cAMP levels in the rat lung. Dexamethasone and corticosterone pretreatment reversed the effect of adrenalectomy whereas progesterone pretreatment but not DOC pretreatment significantly decreased lung cAMP levels. Cyclic AMP levels in normal female rats, whether pregnant or not, were not significantly different from those in male rats. We concluded that the absence of glucocorticoid, as after adrenalectomy, decreased the cAMP levels in rat lungs and that this could be reversed by either dexamethasone or corticosterone replacement. Progesterone reduced the cAMP content in rat lungs by acting as a glucocorticoid antagonist or by acting directly via progesterone receptors.
    Matched MeSH terms: Lung/metabolism*
  14. Mariappan V, Thimma J, Vellasamy KM, Shankar EM, Vadivelu J
    Environ Microbiol Rep, 2018 04;10(2):217-225.
    PMID: 29393577 DOI: 10.1111/1758-2229.12624
    Physiological constituents in airway surface liquids (ASL) appear to impact the adherence and invasion potentials of Burkholderia pseudomallei contributing to recrudescent melioidosis. Here, we investigated the factors present in ASL that is likely to influence bacterial adhesion and invasion leading to improved understanding of bacterial pathogenesis. Six B. pseudomallei clinical isolates from different origins were used to investigate the ability of the bacteria to adhere and invade A549 human lung epithelial cells using a system that mimics the physiological ASL with different pH, NaCl, KCl, CaCl2 and glucose concentrations. These parameters resulted in markedly differential adherence and invasion abilities of B. pseudomallei to the lung epithelial cells. The concentration of 20 mM glucose dramatically increased adherence and invasion by increasing the rate of pili formation in depiliated bacteria. Glucose significantly increased adherence and invasion of B. pseudomallei to A549 cells, and presence of NaCl, KCl and CaCl2 markedly ablated the effect despite the presence of glucose. Our data established a link between glucose, enhanced adhesion and invasion potentials of B. pseudomallei, hinting increased susceptibility of individuals with diabetes mellitus to clinical melioidosis.
    Matched MeSH terms: Lung/metabolism*
  15. Arbain NH, Salim N, Masoumi HRF, Wong TW, Basri M, Abdul Rahman MB
    Drug Deliv Transl Res, 2019 04;9(2):497-507.
    PMID: 29541999 DOI: 10.1007/s13346-018-0509-5
    Bioavailability of quercetin, a flavonoid potentially known to combat cancer, is challenging due to hydrophobic nature. Oil-in-water (O/W) nanoemulsion system could be used as nanocarrier for quercertin to be delivered to lung via pulmonary delivery. The novelty of this nanoformulation was introduced by using palm oil ester/ricinoleic acid as oil phase which formed spherical shape nanoemulsion as measured by transmission electron microscopy and Zetasizer analyses. High energy emulsification method and D-optimal mixture design were used to optimize the composition towards the volume median diameter. The droplet size, polydispersity index, and zeta potential of the optimized formulation were 131.4 nm, 0.257, and 51.1 mV, respectively. The formulation exhibited high drug entrapment efficiency and good stability against phase separation and storage at temperature 4 °C for 3 months. It was discovered that the system had an acceptable median mass aerodynamic diameter (3.09 ± 0.05 μm) and geometric standard deviation (1.77 ± 0.03) with high fine particle fraction (90.52 ± 0.10%), percent dispersed (83.12 ± 1.29%), and percent inhaled (81.26 ± 1.28%) for deposition in deep lung. The in vitro release study demonstrated that the sustained release pattern of quercetin from naneomulsion formulation up to 48 h of about 26.75% release and it was in adherence to Korsmeyer's Peppas mechanism. The cytotoxicity study demonstrated that the optimized nanoemulsion can potentially induce cyctotoxicity towards A549 lung cancer cells without affecting the normal cells. These results of the study suggest that nanoemulsion is a potential carrier system for pulmonary delivery of molecules with low water solubility like quercetin.
    Matched MeSH terms: Lung/metabolism
  16. Özgüroğlu M, Kilickap S, Sezer A, Gümüş M, Bondarenko I, Gogishvili M, et al.
    Lancet Oncol, 2023 Sep;24(9):989-1001.
    PMID: 37591293 DOI: 10.1016/S1470-2045(23)00329-7
    BACKGROUND: Cemiplimab provided significant survival benefit to patients with advanced non-small-cell lung cancer with PD-L1 tumour expression of at least 50% and no actionable biomarkers at 1-year follow-up. In this exploratory analysis, we provide outcomes after 35 months' follow-up and the effect of adding chemotherapy to cemiplimab at the time of disease progression.

    METHODS: EMPOWER-Lung 1 was a multicentre, open-label, randomised, phase 3 trial. We enrolled patients (aged ≥18 years) with histologically confirmed squamous or non-squamous advanced non-small-cell lung cancer with PD-L1 tumour expression of 50% or more. We randomly assigned (1:1) patients to intravenous cemiplimab 350 mg every 3 weeks for up to 108 weeks, or until disease progression, or investigator's choice of chemotherapy. Central randomisation scheme generated by an interactive web response system governed the randomisation process that was stratified by histology and geographical region. Primary endpoints were overall survival and progression free survival, as assessed by a blinded independent central review (BICR) per Response Evaluation Criteria in Solid Tumours version 1.1. Patients with disease progression on cemiplimab could continue cemiplimab with the addition of up to four cycles of chemotherapy. We assessed response in these patients by BICR against a new baseline, defined as the last scan before chemotherapy initiation. The primary endpoints were assessed in all randomly assigned participants (ie, intention-to-treat population) and in those with a PD-L1 expression of at least 50%. We assessed adverse events in all patients who received at least one dose of their assigned treatment. This trial is registered with ClinicalTrials.gov, NCT03088540.

    FINDINGS: Between May 29, 2017, and March 4, 2020, we recruited 712 patients (607 [85%] were male and 105 [15%] were female). We randomly assigned 357 (50%) to cemiplimab and 355 (50%) to chemotherapy. 284 (50%) patients assigned to cemiplimab and 281 (50%) assigned to chemotherapy had verified PD-L1 expression of at least 50%. At 35 months' follow-up, among those with a verified PD-L1 expression of at least 50% median overall survival in the cemiplimab group was 26·1 months (95% CI 22·1-31·8; 149 [52%] of 284 died) versus 13·3 months (10·5-16·2; 188 [67%] of 281 died) in the chemotherapy group (hazard ratio [HR] 0·57, 95% CI 0·46-0·71; p<0·0001), median progression-free survival was 8·1 months (95% CI 6·2-8·8; 214 events occurred) in the cemiplimab group versus 5·3 months (4·3-6·1; 236 events occurred) in the chemotherapy group (HR 0·51, 95% CI 0·42-0·62; p<0·0001). Continued cemiplimab plus chemotherapy as second-line therapy (n=64) resulted in a median progression-free survival of 6·6 months (6·1-9·3) and overall survival of 15·1 months (11·3-18·7). The most common grade 3-4 treatment-emergent adverse events were anaemia (15 [4%] of 356 patients in the cemiplimab group vs 60 [17%] of 343 in the control group), neutropenia (three [1%] vs 35 [10%]), and pneumonia (18 [5%] vs 13 [4%]). Treatment-related deaths occurred in ten (3%) of 356 patients treated with cemiplimab (due to autoimmune myocarditis, cardiac failure, cardio-respiratory arrest, cardiopulmonary failure, septic shock, tumour hyperprogression, nephritis, respiratory failure, [n=1 each] and general disorders or unknown [n=2]) and in seven (2%) of 343 patients treated with chemotherapy (due to pneumonia and pulmonary embolism [n=2 each], and cardiac arrest, lung abscess, and myocardial infarction [n=1 each]). The safety profile of cemiplimab at 35 months, and of continued cemiplimab plus chemotherapy, was generally consistent with that previously observed for these treatments, with no new safety signals INTERPRETATION: At 35 months' follow-up, the survival benefit of cemiplimab for patients with advanced non-small-cell lung cancer was at least as pronounced as at 1 year, affirming its use as first-line monotherapy for this population. Adding chemotherapy to cemiplimab at progression might provide a new second-line treatment for patients with advanced non-small-cell lung cancer.

    FUNDING: Regeneron Pharmaceuticals and Sanofi.

    Matched MeSH terms: Lung/metabolism
  17. Zhang H, Ramamoorthy A, Rengarajan T, Iyappan P, Alahmadi TA, Wainwright M, et al.
    J Biochem Mol Toxicol, 2024 Jan;38(1):e23578.
    PMID: 37927152 DOI: 10.1002/jbt.23578
    Lung cancer is one of the most common cancers in men. Although many diagnostic and treatment regimens have been followed in the treatment for lung cancer, increasing mortality rate due to lung cancer is depressing and hence requires alternative plant based therapeutics with with less side-effects. Myrtenol exhibits anti-inflammatory and antioxidant properties. Hence we intended to study the effect of Myrtenol on B(a)P-induced lung cancer. Our study showed that B(a)P lowered hematological count, decreased phagocyte and avidity indices, nitroblue tetrazolium (NBT) reduction, levels of immunoglubulins, antioxidant levels, whereas Myrtenol treatment restored them back to normal levels. On the other hand, xenobiotic and liver dysfunction marker enzymes and pro-inflammatory cytokines were elevated on B(a)P exposure, which retuned back to normal by Myrtenol. This study thus describes the immunomodulatory and antioxidant effects of Myrtenol on B[a]P-induced immune destruction.
    Matched MeSH terms: Lung/metabolism
  18. Arfian N, Nugraha GC, Kencana SMS, Alexandra G, Eliyani ND, Dewi KC, et al.
    Med J Malaysia, 2024 Aug;79(Suppl 4):72-76.
    PMID: 39215419
    INTRODUCTION: Inflammation caused by diabetes can damage multiple organs, including the lungs. Vitamin D (VD) has been shown to potentially reduce inflammation and boost the immune system. VD might play a role in diabetes' inflammatory response. This study aims to elucidate the evidence regarding the lung as the target organ for DM and the possible role of VD in preventing pulmonary damage progression in the diabetes rat model.

    MATERIAL AND METHODS: Thirty Sprague Dawley rats (3-monthold, 200 to 300 gm) were randomly divided into six groups, namely control (C), 4 weeks diabetes mellitus (DM1), 8 weeks DM (DM2) and three DM1 groups (VD1, VD2, and VD3) who received Vitamin D doses of 0.125, 0.25 and 0.50 μg/kg BW, respectively. After 4 weeks, daily VD was administered intraperitoneally for 30 days. Lung tissues were taken for IL- 6, MCP-1, NFKB and CD68 mRNA expression analysis and paraffin embedding. Immunohistochemical staining against CD68 and MCP-1 was conducted. Data were analysed using one-way ANOVA. p < 0.05 was considered statistically significant.

    RESULTS: DM2 group represented significantly higher IL6, MCP1, NFKB and CD68 mRNA expression than Control group (p < 0.05). Meanwhile, VD2 and VD3 groups revealed significantly lower mRNA expression of IL-6, MCP1, NFKB and CD68 than DM2 (p < 0.05). Immunostaining revealed the spreading of MCP1 protein expression in lung tissue along with macrophage infiltration in the DM2 group, which was reduced in the VD2 and the VD3 groups.

    CONCLUSION: VD shows a protective effect on diabetesinduced lung damage by regulating inflammation factors.

    Matched MeSH terms: Lung/metabolism
  19. Seiffert J, Hussain F, Wiegman C, Li F, Bey L, Baker W, et al.
    PLoS One, 2015;10(3):e0119726.
    PMID: 25747867 DOI: 10.1371/journal.pone.0119726
    Particle size and surface chemistry are potential determinants of silver nanoparticle (AgNP) respiratory toxicity that may also depend on the lung inflammatory state. We compared the effects of intratracheally-administered AgNPs (20 nm and 110 nm; polyvinylpyrrolidone (PVP) and citrate-capped; 0.1 mg/Kg) in Brown-Norway (BN) and Sprague-Dawley (SD) rats. In BN rats, there was both a neutrophilic and eosinophilic response, while in SD rats, there was a neutrophilic response at day 1, greatest for the 20 nm citrate-capped AgNPs. Eosinophilic cationic protein was increased in bronchoalveolar lavage (BAL) in BN and SD rats on day 1. BAL protein and malondialdehyde levels were increased in BN rats at 1 and 7 days, and BAL KC, CCL11 and IL-13 levels at day 1, with increased expression of CCL11 in lung tissue. Pulmonary resistance increased and compliance decreased at day 1, with persistence at day 7. The 20 nm, but not the 110 nm, AgNPs increased bronchial hyperresponsiveness on day 1, which continued at day 7 for the citrate-capped AgNPs only. The 20 nm versus the 110 nm size were more proinflammatory in terms of neutrophil influx, but there was little difference between the citrate-capped versus the PVP-capped AgNPs. AgNPs can induce pulmonary eosinophilic and neutrophilic inflammation with bronchial hyperresponsiveness, features characteristic of asthma.
    Matched MeSH terms: Lung/metabolism*
  20. Lim JC, Jeyaraj EJ, Sagineedu SR, Wong WS, Stanslas J
    Pharmacology, 2015;95(1-2):70-7.
    PMID: 25613753 DOI: 10.1159/000370313
    Andrographolide has been reported with anticancer and anti-inflammatory properties through the inhibition of the activity of signaling molecules such as v-Src, nuclear factor-κB (NF-κB), STAT3, and PI3K. NF-κB has been proven to promote cancer cell survival, and targeting this pathway will halt the growth of cancer cells. Efforts have been made to produce semisynthetic derivatives of andrographolide with improved anticancer potency and selectivity. Subsequently, the effect of a selected derivative, 3,14,19-tripropionylandrographolide (SRS06), was tested for its action against NF-κB.
    Matched MeSH terms: Carcinoma, Non-Small-Cell Lung/metabolism*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links