Displaying publications 1 - 20 of 36 in total

Abstract:
Sort:
  1. Tabuk TC, Ulger S
    Med Parazitol (Mosk), 2000 Apr-Jun.
    PMID: 10900916
    Turkey is the last country in the temperate zone on the edge of the European continent in which malaria is prevalent at endemic and occasionally epidemic proportions. Malaria was the most significant vector borne disease constituting a serious healthy problem until it was suppressed in 1965. Following the establishment of malaria eradication program in 1957 which began operation in 1960 after many years of malaria control, the incidence of malaria decreased annually and the stricken areas became more and more restricted. Unfortunately, an agricultural development program initiated in mid 70's in the Cukurova Plain caused a substantial migration of workers from the eastern areas where malaria at that time was more prevalent. This population movement together with the industrial expansion that took place resulted in a serious epidemic of vivax malaria in 1977 in the provinces of Adana, Icel and Hatay, where 101,867 cases were reported. The following years, Turkey targeted to reduce the number of malaria cases to less than 800 by 1984. After 1985, the number of malaria cases in the country has continued to increase and in the past five and six years a serious malaria epidemics has been building up in the southeastern provinces. The gravitational center of the disease has now moved from the Cukurova to the GAP area in South East Anatolia and beyond. The indicator of this movement is that 89% of total cases in 1998 is concerning to the GAP region. By the year 1998 the number of reported cases were 36,842. The common parasite type is P. vivax in the country. The other types are generally imported from other countries. These are Syria, S. Arabia, Pakistan, Afghanistan, Yemen, Nigeria, India, Malaysia, Ghana, Indonesia, Sudan etc. Malaria cases are registered in bordering areas of the country constantly. The suggested solutions for Malaria control in bordering areas are: 1. To establish control laboratories in customs in order to take blood from persons who come from risky areas for malaria. When positive cases are found these laboratories will also provide free treatment. 2. East country should give information about the malaria situation in their country to the other countries.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  2. Moore CS, Cheong I
    Br J Clin Pract, 1995 Nov-Dec;49(6):304-7.
    PMID: 8554954
    The clinical, haematological and biochemical profiles of all domestic and imported malaria cases admitted to the Hospital Kuala Lumpur were analysed. The most common malaria types were Plasmodium falciparum (39.5%) and Plasmodium vivax (42%). The most common patient type was men aged 29-40 years (reflecting the high mobility of this group, many of whom were illegal immigrants). Misdiagnosis on admission was frequently due to the variable clinical presentation of the disease and the difficulties of obtaining an accurate history. Associated haematological abnormalities were common. Chloroquine resistance was diagnosed in four P. falciparum patients and in one P. falciparum/vivax patient. Overall, imported malaria did not seem more severe than domestic. The three patients with cerebral malaria survived. One patient died of acute liver failure. The large influx of illegal immigrants to Malaysia has resulted in a surge in malaria infection; illegal immigrants remain a source of chloroquine resistance.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  3. Anthony TG, Conway DJ, Cox-Singh J, Matusop A, Ratnam S, Shamsul S, et al.
    J Infect Dis, 2005 May 1;191(9):1558-64.
    PMID: 15809916
    The population genetic structure of Plasmodium falciparum differs between endemic regions, but the characteristics of a population recently fragmented by effective malaria control have been unknown.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  4. Bamaga OA, Mahdy MA, Mahmud R, Lim YA
    Parasit Vectors, 2014;7:351.
    PMID: 25074325 DOI: 10.1186/1756-3305-7-351
    Yemen is a Mediterranean country where 65% of its population is at risk of malaria, with 43% at high risk. Yemen is still in the control phase without sustainable reduction in the proportion of malaria cases. A cross-sectional household survey was carried out in different districts in the southeast of the country to determine malaria prevalence and identify factors that impede progress of the elimination phase.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  5. Gockchinar T, Kalipsi S
    Med Parazitol (Mosk), 2001 Jan-Mar;?(1):44-5.
    PMID: 11548315
    Geographically, Turkey is situated in an area where malaria is very risky. The climatic conditions in the region are suitable for the malaria vector to proliferate. Due to agricultural infrastructural changes, GAP and other similar projects, insufficient environmental conditions, urbanization, national and international population moves, are a key to manage malaria control activities. It is estimated that malaria will be a potential danger for Turkey in the forthcoming years. The disease is located largely in south-eastern Anatolia. The Diyarbakir, Batman, Sanliurfa, Siirt, and Mardin districts are the most affected areas. In western districts, like Aydin and Manisa, an increase in the number of indigenous cases can be observed from time to time. This is due to workers moving from malaria districts to western parts to final work. Since these workers cannot be controlled, the population living in these regions get infected from indigenous cases. There were 84,345 malaria cases in 1994 and 82,096 in 1995, they decreased to 60,884 in 1996 and numbered 35,456 in 1997. They accounted for 36,842 and 20,963 in 1998 and 1999, respectively. In Turkey there are almost all cases of P. vivax malaria. There are also P. vivax and P. falciparum malaria cases coming from other countries: There were 321 P. vivax cases, including 2 P. falciparum ones, arriving to Turkey from Iraq in 1995. The P. vivax malaria cases accounted for 229 in 1996, and 67, cases P. vivax including 12 P. falciparum cases, in 1997, and 4 P. vivax cases in 1998 that came from that country. One P. vivax case entered Turkey from Georgia in 1998. The cause of higher incidence of P. vivax cases in 1995, it decreasing in 1999, is the lack of border controls over workers coming to Turkey. The other internationally imported cases are from Syria, Sudan, Pakistan, Afghanistan, Nigeria, India, Azerbaijan, Malaysia, Ghana, Indonesia, Yemen. Our examinations have shown that none of these internationally imported cases are important in transmitting the diseases. The districts where malaria cases occur are the places where population moves are rapid, agriculture is the main occupation, the increase in the population is high and the education/cultural level is low. Within years, the districts with high malaria cases also differ. Before 1990 Cucurova and Amikova were the places that showed the highest incidence of malaria. Since 1990, the number of cases from south-eastern Anatolia has started to rise. The main reasons for this change are a comprehensive malaria prevention programme, regional development, developed agricultural systems, and lower population movements. The 1999 statistical data indicate that 83 and 17% of all malaria cases are observed in the GAP and other districts, respectively. The distribution of malaria cases in Turkey differs by months and climatic conditions. The incidence of malaria starts to rise in March, reaching its peak in July, August and September, begins to fall in October. In other words, the number of malaria cases is lowest in winter and reaches its peak in summer and autumn. This is not due to the parasite itself, but a climatic change is a main reason. In the past years the comprehensive malaria prevention programme has started bearing its fruits. Within the WHO Roll Back Malaria strategies, Turkey has started to implement its national malaria control projects, the meeting held on March 22, 2000, coordinated the country's international cooperation for this purpose. The meeting considered the aim of the project to be introduced into other organizations. In this regards, the target for 2002 is to halve the incidence of malaria as compared to 1999. The middle--and long-term incidence of malaria will be lowered to even smaller figures. The objectives of this project are as follows: to integrate malaria services with primary health care services to prove more effective studies; to develop early diagnosis and treatment systems, to provide better diagnostic services, and to develop mobile diagnostic ones; to make radical treatment and monitoring patients; to conduct regular active case surveillance studies; to conduct regular vector control studies; to monitor the sensitivity of vectors to insecticides and to provide their alternatives; to design malaria control studies for the specialists of districts; to implement educational programmes among the population and attract it in controlling malaria.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  6. Rahman WA, Adanan CR, Abu Hassan A
    PMID: 10437952
    A study on the distribution of malaria in Hulu Perak district, Peninsular Malaysia was carried out between January and December 1993. The study encompassed the distribution of malaria cases according to sex, age and profession. A total of 332 cases were recorded, with 182 cases occurring in males. The highest infection was observed in the above 15 years old age group. Forest workers (loggers, rattan collectors and forest product gatherers) were the group most exposed to the disease (32.8%), followed by both plantantion workers (32.2%) and aboriginal communities (32.2%). Army and police personnels (2.1%) were also infected. Plasmodium falciparum was the most common species of malaria in the area.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  7. Rahman WA, Abu Hassan A, Adanan CR, Rashid MR
    Acta Trop, 1993 Dec;55(4):231-5.
    PMID: 8147279
    Blood from most of the residents of a remote village in northern peninsular Malaysia, bordering Thailand, was examined for malaria parasites monthly for 1 year. Plasmodium vivax was the commonest infection, but P. falciparum and mixed infections also occurred. Monthly collections of the malaria vector, Anopheles maculatus showed a positive correlation between mosquito densities and malaria positivity in the human population and a negative correlation with rainfall.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  8. Chua TH
    Trop Biomed, 2012 Mar;29(1):121-8.
    PMID: 22543612 MyJurnal
    According to the report of the Intergovernmental Panel on Climate Change (IPCC), Malaysia will experience an increase of 3-5°C in the future. As the development of the malaria parasite, Plasmodium falciparum, is sensitive to temperature, we investigated, using computer models, the effect of increase of 3º and 5ºC on the possible changes in the epidemiology of malaria transmission of P. falciparum in Malaysia. Four environmentally different locations were selected: Kuala Lumpur (KL), Cameron Highlands (CH), Kota Kinabalu (KK) and Kinabalu Park (KP). The extrinsic incubation period (EIP) was estimated using hourly temperatures and the mean daily temperatures. The EIP values estimated using the mean daily temperature were lower than those computed from hourly temperatures in warmer areas (KL, KK), but higher in the cooler areas (CH, KP). The computer simulations also indicated that the EIP will be decreased if the temperature was raised by 3º or 5ºC, with the effect more pronounced for the greater temperature increase, and for the cooler places. The vector cohort that is still alive at a time to transmit malaria (s(EIP)) also increased when the temperature was raised, with the increase more pronounced in the cooler areas. This study indicates an increase in temperature will have more significant effect in shortening the EIP in a cooler place (eg CH, KP), resulting in a greater s(EIP), and consequently increasing the transmission intensity and malaria risk. A temperature increase arising from the global climate change will likely affect the epidemiology of malaria in Malaysia, especially in the cooler areas.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  9. Melo JO, Padilha MAO, Barbosa RTA, Alonso WJ, Vittor AY, Laporta GZ
    Trop Biomed, 2020 Jun;37(2):513-535.
    PMID: 33235398
    After a centenary fight against malaria, Brazil has seen an opportunity for change with the proposal of the malaria elimination policy set by the Brazilian government, in line with malaria elimination policies in other Latin American countries. Brazilian malaria experts regard eliminating malaria by 2030 to be within reach. Herein we evaluated the likelihood that malaria elimination can be accomplished in Brazil through systematic review of the literature on malaria elimination in Brazil and epidemiological analysis. Fifty-two articles referring to malaria eradication/elimination in Brazil were analyzed to identify challenges and technological breakthroughs for controlling malaria. Monthly deaths (1979-2016) and monthly severe malaria cases (1998-2018) were analyzed according to age groups, geographic region and parasite species. As a result, we observed that the declining malaria burden was mostly attributable to a decline in Plasmodium falciparum-malaria. At the same time, the proportional increase of Plasmodium vivax-malaria in comparison with P. falciparum-malaria was notable. This niche replacement mechanism was discussed in the reviewed literature. In addition, the challenges to P. vivax-malaria elimination outnumbered the available technological breakthroughs. Although accumulated and basic information exists on mosquito vector biology, the lack of specific knowledge about mosquito vector taxonomy and ecology may hamper current attempts at stopping malaria in the country. An impressive reduction in malaria hospitalizations and mortality was seen in Brazil in the past 3 decades. Eliminating malaria deaths in children less than 5 years and P. falciparum severe cases may be achievable goals under the current malaria policy until 2030. However, eliminating P. vivax malaria transmission and morbidity seems unattainable with the available tools. Therefore, complete malaria elimination in Brazil in the near future is unlikely.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  10. Naing C, Whittaker MA, Nyunt Wai V, Mak JW
    PLoS Negl Trop Dis, 2014 Aug;8(8):e3071.
    PMID: 25121491 DOI: 10.1371/journal.pntd.0003071
    BACKGROUND: Plasmodium vivax is one of the major species of malaria infecting humans. Although emphasis on P. falciparum is appropriate, the burden of vivax malaria should be given due attention. This study aimed to synthesize the evidence on severe malaria in P. vivax infection compared with that in P. falciparum infection.
    METHODS/PRINCIPAL FINDINGS: We searched relevant studies in electronic databases. The main outcomes required for inclusion in the review were mortality, severe malaria (SM) and severe anaemia (SA). The methodological quality of the included studies was assessed using the Newcastle-Ottawa Scale. Overall, 26 studies were included. The main meta-analysis was restricted to the high quality studies. Eight studies (n = 27490) compared the incidence of SM between P. vivax infection and P. falciparum mono-infection; a comparable incidence was found in infants (OR: 0.45, 95% CI:0.04-5.68, I2:98%), under 5 year age group (OR: 2.06, 95% CI: 0.83-5.1, I2:83%), the 5-15 year-age group (OR: 0.6, 95% CI: 0.31-1.16, I2:81%) and adults (OR: 0.83, 95% CI: 0.67-1.03, I2:25%). Six studies reported the incidences of SA in P. vivax infection and P. falciparum mono-infection; a comparable incidence of SA was found among infants (OR: 3.47, 95%:0.64-18.94, I2: 92%), the 5-15 year-age group (OR:0.71, 95% CI: 0.06-8.57, I2:82%). This was significantly lower in adults (OR:0.75, 95% CI: 0.62-0.92, I2:0%). Five studies (n = 71079) compared the mortality rate between vivax malaria and falciparum malaria. A lower rate of mortality was found in infants with vivax malaria (OR:0.61, 95% CI:0.5-0.76, I2:0%), while this was comparable in the 5-15 year- age group (OR: 0.43, 95% CI:0.06-2.91, I2:84%) and the children of unspecified-age group (OR: 0.77, 95% CI:0.59-1.01, I2:0%).
    CONCLUSION: Overall, the present analysis identified that the incidence of SM in patients infected with P. vivax was considerable, indicating that P. vivax is a major cause of SM. Awareness of the clinical manifestations of vivax malaria should prompt early detection. Subsequent treatment and monitoring of complications can be life-saving.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  11. Al-Hamidhi S, Mahdy MA, Idris MA, Bin Dajem SM, Al-Sheikh AA, Al-Qahtani A, et al.
    Infect Genet Evol, 2014 Oct;27:25-31.
    PMID: 24981966 DOI: 10.1016/j.meegid.2014.06.015
    In the Arabian Peninsula malaria control is progressing steadily, backed by adequate logistic and political support. As a result, transmission has been interrupted throughout the region, with exception of limited sites in Yemen and Saudi Arabia. Here we examined Plasmodium falciparum parasites in these sites to assess if the above success has limited diversity and gene flow.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  12. Cox-Singh J, Zakaria R, Abdullah MS, Rahman HA, Nagappan S, Singh B
    Am J Trop Med Hyg, 2001 6 27;64(1-2):28-31.
    PMID: 11425158
    Dihydropteroate synthase (dhps) and dihydrofolate reductase (dhfr) alleles were typed in 67 Malaysian Plasmodium falciparum isolates. The isolates were collected from two geographically distinct locations: 51 from Sabah, Malaysian Borneo, where sulfadoxine/pyrimethamine (SDX/PYR) is used to treat uncomplicated malaria and 16 from Peninsular Malaysia where in vivo resistance to SDX/PYR has been reported. A total of seven dhps alleles were identified with no significant difference in allele frequency between the 2 populations. Two of the dhps alleles described here have not been previously reported. Four dhfr alleles were detected in 67 P. falciparum isolates. Eighty-seven percent of the isolates from the Peninsula, where clinical SDX/PYR failure has been reported, had dhfr alleles with triple point mutations while all of the isolates from Sabah had dhfr alleles with 2 or less point mutations. The difference in dhfr allele frequency between the two populations was highly significant. There was no correlation between in vitro PYR response and accumulation of dhfr point mutations.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  13. Mak JW, Jegathesan M, Lim PK, Hakim SL, Rain AN, Ambu S, et al.
    PMID: 1298064
    In spite of more than 30 years of control activities, malaria continues to be the most important parasitic infection in Malaysia, accounting for 39,189 confirmed cases in 1991, giving an annual parasite incidence rate of 2.2 per 1,000 population. Some factors contributing to the continued transmission of malaria are the development of drug resistant Plasmodium falciparum, changes in vector behavior, and ecological changes due to socio-economic reasons. Malaria parasite rates are higher among the Aborigines, land scheme settlers and those in intimate contact with the jungle, like loggers. There has been no substantial change in the proportion of the three common malaria species responsible for infections, P. falciparum, P. vivax, P. malariae and mixed infections accounting for about 70%, 28%, 1% and 1%, respectively of all infections. Drug resistant P. falciparum is unevenly distributed in Malaysia, but based on clinical experience and in vitro drug sensitivity studies, chloroquine resistance is frequently encountered. There has been clinical and laboratory evidence of resistance to sulfadoxine/pyrimethamine combination as well as quinine, but all these have so far been successfully treated with a combination of quinine and tetracycline. The eradication of the disease is impossible in the near future but there is confidence that with better surveillance techniques and the use of alternative control measures like permethrin impregnated bed-nets to complement existing ones, the target of bringing down the annual parasite incidence to 2 per 1,000 population during the Sixth Malaysian Plan period (1991-1995) can be achieved.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  14. Seleena P, Lee HL, Chooi KH, Junaidih S
    PMID: 15272747
    A pilot study was undertaken to determine the effectiveness of space application of insecticides for the control of malaria in Ranau, a district in Sabah. A village each was treated monthly: with chemical adulticide--alpha cypermethrin (Fendona SC(R)/10SC(R)) at 2 g a.i./10,000 m2 in Pahu; with biological larvicides--Bacillus thuringiensis israelensis (Vectobac 12AS(R)) at 500 ml/10,000 m2 or B. sphaericus (Vectolex WG(R)) at 500 g/10,000 m2 in Pinawantai; and with a mixture of chemical adulticide and biological larvicide in Togop Laut. All sprayings were conducted using a portable mist blower. During the study period all villages, including Tarawas the untreated village, received the conventional malaria control measures. Entomological and epidemiological surveillance was used to measure the effectiveness of the space application. The entomological surveillance indicated that the An. balabacensis population was significantly reduced by alpha cypermethrin in Pahu and Togop Laut and B. sphaericus in Pinawantai; but was not reduced by B.t.i. in Pinawantai. There was a significant reduction in the number of malaria cases and in the slide positivity rate in the treated villages during the study period. The pilot study does indicate that space application of larvicides/adulticides or a mixture of both is able to reduce the malaria vector population and the malaria transmission. A larger scale study needs to be undertaken in a malarious village/province to determine whether space application of insecticides together with other malaria control measures will be able to eradicate malaria.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  15. Conway DJ, Machado RL, Singh B, Dessert P, Mikes ZS, Povoa MM, et al.
    Mol Biochem Parasitol, 2001 Jul;115(2):145-56.
    PMID: 11420101
    Comparing patterns of genetic variation at multiple loci in the genome of a species can potentially identify loci which are under selection. The large number of polymorphic microsatellites in the malaria parasite Plasmodium falciparum are available markers to screen for selectively important loci. The Pfs48/45 gene on Chromosome 13 encodes an antigenic protein located on the surface of parasite gametes, which is a candidate for a transmission blocking vaccine. Here, genotypic data from 255 P. falciparum isolates are presented, which show that alleles and haplotypes of five single nucleotide polymorphisms (SNPs) in the Pfs48/45 gene are exceptionally skewed in frequency among different P. falciparum populations, compared with alleles at 11 microsatellite loci sampled widely from the parasite genome. Fixation indices measuring inter-population variance in allele frequencies (F(ST)) were in the order of four to seven times higher for Pfs48/45 than for the microsatellites, whether considered (i) among populations within Africa, or (ii) among different continents. Differing mutational processes at microsatellite and SNP loci could generally affect the population structure at these different types of loci, to an unknown extent which deserves further investigation. The highly contrasting population structure may also suggest divergent selection on the amino acid sequence of Pfs48/45 in different populations, which plausibly indicates a role for the protein in determining gamete recognition and compatibility.
    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  16. Beshir KB, Grignard L, Hajissa K, Mohammed A, Nurhussein AM, Ishengoma DS, et al.
    Am J Trop Med Hyg, 2020 08;103(2):558-560.
    PMID: 32553046 DOI: 10.4269/ajtmh.20-0467
    Rapid diagnostic tests (RDTs) play a critical role in malaria diagnosis and control. The emergence of Plasmodium falciparum parasites that can evade detection by RDTs threatens control and elimination efforts. These parasites lack or have altered genes encoding histidine-rich proteins (HRPs) 2 and 3, the antigens recognized by HRP2-based RDTs. Surveillance of such parasites is dependent on identifying false-negative RDT results among suspected malaria cases, a task made more challenging during the current pandemic because of the overlap of symptoms between malaria and COVID-19, particularly in areas of low malaria transmission. Here, we share our perspective on the emergence of P. falciparum parasites lacking HRP2 and HRP3, and the surveillance needed to identify them amid the COVID-19 pandemic.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  17. Dawaki S, Al-Mekhlafi HM, Ithoi I, Ibrahim J, Atroosh WM, Abdulsalam AM, et al.
    Malar J, 2016 07 08;15:351.
    PMID: 27392040 DOI: 10.1186/s12936-016-1394-3
    BACKGROUND: Malaria is one of the most severe global public health problems worldwide, particularly in Africa, where Nigeria has the greatest number of malaria cases. This community-based study was designed to investigate the prevalence and risk factors of malaria and to evaluate the knowledge, attitudes, and practices (KAP) regarding malaria among rural Hausa communities in Kano State, Nigeria.

    METHODS: A cross-sectional community-based study was conducted on 551 participants from five local government areas in Kano State. Blood samples were collected and examined for the presence of Plasmodium species by rapid diagnostic test (RDT), Giemsa-stained thin and thick blood films, and PCR. Moreover, demographic, socioeconomic, and environmental information as well as KAP data were collected using a pre-tested questionnaire.

    RESULTS: A total of 334 (60.6 %) participants were found positive for Plasmodium falciparum. The prevalence differed significantly by age group (p malaria was associated significantly with being aged 12 years or older, having a low household family income, not using insecticide treated nets (ITNs), and having no toilets in the house. Overall, 95.6 % of the respondents had prior knowledge about malaria, and 79.7, 87.6 and 95.7 % of them knew about the transmission, symptoms, and prevention of malaria, respectively. The majority (93.4 %) of the respondents considered malaria a serious disease. Although 79.5 % of the respondents had at least one ITN in their household, utilization rate of ITNs was 49.5 %. Significant associations between the respondents' knowledge concerning malaria and their age, gender, education, and household monthly income were reported.

    CONCLUSIONS: Malaria is still highly prevalent among rural Hausa communities in Nigeria. Despite high levels of knowledge and attitudes in the study area, significant gaps persist in appropriate preventive practices, particularly the use of ITNs. Innovative and Integrated control measures to reduce the burden of malaria should be identified and implemented in these communities. Community mobilization and health education regarding the importance of using ITNs to prevent malaria and save lives should be considered.

    Matched MeSH terms: Malaria, Falciparum/epidemiology*
  18. Al-abd NM, Mahdy MA, Al-Mekhlafi AM, Snounou G, Abdul-Majid NB, Al-Mekhlafi HM, et al.
    PLoS One, 2013;8(7):e67853.
    PMID: 23861823 DOI: 10.1371/journal.pone.0067853
    The accuracy of the conclusions from in vivo efficacy anti-malarial drug trials depends on distinguishing between recrudescences and re-infections which is accomplished by genotyping genes coding P. falciparum merozoite surface 1 (MSP1) and MSP2. However, the reliability of the PCR analysis depends on the genetic markers' allelic diversity and variant frequency. In this study the genetic diversity of the genes coding for MSP1 and MSP2 was obtained for P. falciparum parasites circulating in Yemen.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  19. Abdullah NR, Norahmad NA, Jelip J, Sulaiman LH, Mohd Sidek H, Ismail Z, et al.
    Malar J, 2013;12:198.
    PMID: 23758930 DOI: 10.1186/1475-2875-12-198
    Sulphadoxine-pyrimethamine (SP) has been in use for the treatment of uncomplicated falciparum malaria in Malaysia since the 1970s and is still widely employed in spite of widespread clinical resistance. Resistance to SP is known to be mediated by mutations in the pfdhfr and pfdhps genes. The aim of the present study was to investigate the distribution of pfdhfr and pfdhps gene polymorphism in Plasmodium falciparum field isolates from Kalabakan, Sabah, in northern Borneo.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
  20. Srinivasan V, Mohamed M, Zakaria R, Ahmad AH
    Infect Disord Drug Targets, 2012 Oct;12(5):371-9.
    PMID: 23082960
    Malaria, one of the most deadly diseases of our time affects more than 200 million people across the globe and is responsible for about one million deaths annually. Until recently Plasmodium falciparum has been the main cause for malarial infection in human beings but now Plasmodium knowlesi from Malaysia remains as one of the most virulent parasite spreading fast not only in Malaysia but in different parts of the world. Hence there is urgent need for the global fight to control malaria. Global malaria eradication program by use of insecticide spraying has resulted in good response in the past. Treatment of malaria infected patients with anti-malarial drugs has helped to eliminate malarial infections successfully but with increased resistance displayed by malarial parasites to these drugs there is resurgence of malaria caused both by drug resistance as well as by infection caused by new malarial species like Plasmodium knowlesi. With recent advances on molecular studies on malarial parasites it is now clear that the pineal hormone melatonin acts as a cue for growth and development of Plasmodium falciparum. Same may be true for Plasmodium knowlesi also. Hence treatment modalities that can effectively block the action of melatonin on Plasmodium species during night time by way of using either bright light therapy or use of melatonin receptor blocking can be considered as useful approaches for eliminating malarial infection in man.
    Matched MeSH terms: Malaria, Falciparum/epidemiology
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links