Displaying publications 1 - 20 of 29 in total

Abstract:
Sort:
  1. Kumar G, Saratale RG, Kadier A, Sivagurunathan P, Zhen G, Kim SH, et al.
    Chemosphere, 2017 Jun;177:84-92.
    PMID: 28284119 DOI: 10.1016/j.chemosphere.2017.02.135
    Bio-electrochemical systems (BESs) are the microbial systems which are employed to produce electricity directly from organic wastes along with some valuable chemicals production such as medium chain fatty acids; acetate, butyrate and alcohols. In this review, recent updates about value-added chemicals production concomitantly with the production of gaseous fuels like hydrogen and methane which are considered as cleaner for the environment have been addressed. Additionally, the bottlenecks associated with the conversion rates, lower yields and other aspects have been mentioned. In spite of its infant stage development, this would be the future trend of energy, biochemicals and electricity production in greener and cleaner pathway with the win-win situation of organic waste remediation. Henceforth, this review intends to summarise and foster the progress made in the BESs and discusses its challenges and outlook on future research advances.
    Matched MeSH terms: Methane/metabolism*
  2. Hassan SR, Zaman NQ, Dahlan I
    Prep Biochem Biotechnol, 2020;50(3):234-239.
    PMID: 31762367 DOI: 10.1080/10826068.2019.1692214
    Recycled paper mill effluent (RPME) consists of various organic and inorganic compounds. In this study, modified anaerobic hybrid baffled (MAHB) bioreactor has been successfully used to anaerobically digest RPME. The anaerobic digestion was investigated in relation to methane production rate, lignin removal, and chemical oxygen demand (COD) removal, with respect to organic loading rate (OLR) and hydraulic retention time (HRT). The analysis using kinetic study was carried out under mesophilic conditions (37 ± 2 °C) and influent COD concentrations (1000-4000 mg L-1), to prove its practicability towards RPME treatment. First-order kinetic model was used to clarify the behavior of RPME anaerobic digestion under different OLRs (0.14-4.00 g COD L-1 d-1) and HRT (1-7 d). The result shows that the highest COD removal efficiency and methane production rate were recorded to be 98.07% and 2.2223 L CH4 d-1, respectively. This result was further validated by evaluating the biokinetic coefficients (reaction rate constant (k) and maximum biogas production (ym)), which gave values of k = 0.57 d-1 and ym = 0.331 L d-1. This kinetic data concludes that MAHB presented satisfactory performance towards COD removal with relatively high methane production, which can be further utilized as on-site energy supply.
    Matched MeSH terms: Methane/metabolism*
  3. Ghorbani M, Kianmehr MH, Sarlaki E, Angelidaki I, Yang Y, Tabatabaei M, et al.
    Sci Total Environ, 2023 Sep 20;892:164526.
    PMID: 37257609 DOI: 10.1016/j.scitotenv.2023.164526
    The livestock industry needs to use crop straws that are highly digestible to improve feed productivity and reduce ruminal methane emissions. Hence, this study aimed to use the ozonation and pelleting processes to enhance the digestibility and reduce the ruminal methane emissions of wheat straw enriched with two nitrogen sources (i.e., urea and heat-processed broiler litter). Various analyses were conducted on the pellets, including digestibility indicators, mechanical properties, surface chemistry functionalization, chemical-spectral-structural features, and energy requirements. For comparison, loose forms of the samples were also analyzed. The nitrogen-enriched ozonated wheat straw pellets had 43.06 % lower lignin, 28.30 % higher gas production for 24 h, 12.28 % higher metabolizable energy, 13.78 % higher in vitro organic matter digestibility for 24 h, and 28.81 % higher short-chain fatty acid content than the nitrogen-enriched loose sample. The reduction of methane emissions by rumen microorganisms of nitrogen-enriched wheat straw by ozonation, pelleting, and ozonation-pelleting totaled 89.15 %, 23.35 %, and 66.98 %, respectively. The ozonation process resulted in a 64 % increase in the particle density, a 5.5-time increase in the tensile strength, and a 75 % increase in the crushing energy of nitrogen-enriched wheat straw. In addition, ozone treatment could also reduce the specific and thermal energy consumption required in the pelleting process by 15.10 % and 7.61 %, respectively.
    Matched MeSH terms: Methane/metabolism
  4. Ahmad A, Ghufran R
    Crit Rev Biotechnol, 2023 Dec;43(8):1236-1256.
    PMID: 36130802 DOI: 10.1080/07388551.2022.2103641
    This critical review for anaerobic degradation of complex organic compounds like butyrate using reactors has been enormously applied for biogas production. Biogas production rate has a great impact on: reactor granulation methanogenesis, nutrient content, shear velocity, organic loading and loss of nutrients taking place in the reactor continuously. Various technologies have been applied to closed anaerobic reactors to improve biogas production and treatment efficiency. Recent reviews showed that the application of closed anaerobic reactors can accelerate the degradation of organics like volatile fatty acid-butyrate and affect microbial biofilm formation by increasing the number of methanogens and increase methane production 16.5 L-1 CH4 L-1 POME-1. The closed anaerobic reactors with stable microbial biofilm and established organic load were responsible for the improvement of the reactor and methane production. The technology mentioned in this review can be used to monitor biogas concentration, which directly correlates to organic concentrations. This review attempts to evaluate interactions among the: degradation of organics, closed anaerobic reactors system, and microbial granules. This article provides a useful picture for the improvement of the degradation of organic butyrate for COD removal, biogas and methane production in an anaerobic closed reactor.
    Matched MeSH terms: Methane/metabolism
  5. Eggleton P, Homathevi R, Jones DT, MacDonald JA, Jeeva D, Bignell DE, et al.
    Philos Trans R Soc Lond B Biol Sci, 1999 Nov 29;354(1391):1791-802.
    PMID: 11605622
    A synthesis is presented of sampling work conducted under a UK government-funded Darwin Initiative grant undertaken predominantly within the Danum Valley Conservation Area (DVCA), Sabah, East Malaysia. The project concerned the assemblage structure, gas physiology and landscape gas fluxes of termites in pristine and two ages of secondary, dipterocarp forest. The DVCA termite fauna is typical of the Sunda region, dominated by Termes-group soil-feeders and Nasutitermitinae. Selective logging appears to have relatively little effect on termite assemblages, although soil-feeding termites may be moderately affected by this level of disturbance. Species composition changes, but to a small extent when considered against the background level of compositional differences within the Sunda region. Physiologically the assemblage is very like others that have been studied, although there are some species that do not fit on the expected body size-metabolic rate curve. As elsewhere, soil-feeders and soil-wood interface-feeders tend to produce more methane. As with the termite assemblage characteristics, gross gas and energy fluxes do not differ significantly between logged and unlogged sites. Although gross methane fluxes are high, all the soils at DVCA were methane sinks, suggesting that methane oxidation by methanotrophic bacteria was a more important process than methane production by gut archaea. This implies that methane production by termites in South-East Asia is not contributing significantly to the observed increase in levels of methane production worldwide. Biomass density, species richness, clade complement and energy flow were much lower at DVCA than at a directly comparable site in southern Cameroon. This is probably due to the different biogeographical histories of the areas.
    Matched MeSH terms: Methane/metabolism
  6. Muhammad Nasir I, Mohd Ghazi TI, Omar R
    Appl Microbiol Biotechnol, 2012 Jul;95(2):321-9.
    PMID: 22622840 DOI: 10.1007/s00253-012-4152-7
    Anaerobic digestion treatments have often been used for biological stabilization of solid wastes. These treatment processes generate biogas which can be used as a renewable energy sources. Recently, anaerobic digestion of solid wastes has attracted more interest because of current environmental problems, most especially those concerned with global warming. Thus, laboratory-scale research on this area has increased significantly. In this review paper, the summary of the most recent research activities covering production of biogas from solid wastes according to its origin via various anaerobic technologies was presented.
    Matched MeSH terms: Methane/metabolism
  7. Chai A, Wong YS, Ong SA, Lutpi NA, Sam ST, Wirach T, et al.
    Bioprocess Biosyst Eng, 2023 Jul;46(7):995-1009.
    PMID: 37160769 DOI: 10.1007/s00449-023-02879-0
    Anaerobic co-digestion (co-AD) of agro-industrial waste, namely, palm oil mill effluent (POME) and sugarcane vinasse (Vn), with water hyacinth (WH) as co-substrate was carried out in two separate Anaerobic Suspended Growth Closed Bioreactors (ASGCBs) under thermophilic (55 °C) conditions. The highest chemical oxygen demand (COD) and soluble COD reduction in co-AD of POME-WH (78.61%, 78.86%) is slightly higher than co-AD of Vn-WH (75.75%, 78.24%). However, VFA reduction in co-AD of POME-WH (96.41%) is higher compared to co-AD of Vn-WH (85.94%). Subsequently, biogas production peaked at 13438 mL/day values and 16122 mL/day for co-AD of POME-WH and Vn-WH, respectively. However, the methane content was higher in the co-AD of POME-WH (72.04%) than in the co-AD of Vn-WH (69.86%). Growth yield (YG), maximum specific substrate utilization rate (rx,max) and maximum specific biomass growth rate (μmax) are higher in co-AD of POME-WH, as supported by the higher mixed liquor volatile suspended solids (MLVSS) and COD reduction efficiency compared to co-AD of Vn-WH. However, methane yield ([Formula: see text]) reported in the co-AD of POME-WH and Vn-WH are 0.2748 and 0.3112 L CH4/g CODreduction, respectively, which suggests that WH is a more suitable co-substrate for Vn compared to POME.
    Matched MeSH terms: Methane/metabolism
  8. Faseleh Jahromi M, Liang JB, Mohamad R, Goh YM, Shokryazdan P, Ho YW
    Biomed Res Int, 2013;2013:397934.
    PMID: 23484116 DOI: 10.1155/2013/397934
    The primary objective of this study was to test the hypothesis that solid state fermentation (SSF) of agro-biomass (using rice straw as model); besides, breaking down its lignocellulose content to improve its nutritive values also produces lovastatin which could be used to suppress methanogenesis in the rumen ecosystem. Fermented rice straw (FRS) containing lovastatin after fermentation with Aspergillus terreus was used as substrate for growth study of rumen microorganisms using in vitro gas production method. In the first experiment, the extract from the FRS (FRSE) which contained lovastatin was evaluated for its efficacy for reduction in methane (CH4) production, microbial population, and activity in the rumen fluid. FRSE reduced total gas and CH4 productions (P < 0.01). It also reduced (P < 0.01) total methanogens population and increased the cellulolytic bacteria including Ruminococcus albus, Fibrobacter succinogenes (P < 0.01), and Ruminococcus flavefaciens (P < 0.05). Similarly, FRS reduced total gas and CH4 productions, methanogens population, but increased in vitro dry mater digestibility compared to the non-fermented rice straw. Lovastatin in the FRSE and the FRS significantly increased the expression of HMG-CoA reductase gene that produces HMG-CoA reductase, a key enzyme for cell membrane production in methanogenic Archaea.
    Matched MeSH terms: Methane/metabolism*
  9. Sow SL, Khoo G, Chong LK, Smith TJ, Harrison PL, Ong HK
    World J Microbiol Biotechnol, 2014 Oct;30(10):2645-53.
    PMID: 24929362 DOI: 10.1007/s11274-014-1687-z
    In a previous study, notable differences of several physicochemical properties, as well as the community structure of ammonia oxidizing bacteria as judged by 16S rRNA gene analysis, were observed among several disused tin-mining ponds located in the town of Kampar, Malaysia. These variations were associated with the presence of aquatic vegetation as well as past secondary activities that occurred at the ponds. Here, methane oxidizing bacteria (MOB), which are direct participants in the nutrient cycles of aquatic environments and biological indicators of environmental variations, have been characterised via analysis of pmoA functional genes in the same environments. The MOB communities associated with disused tin-mining ponds that were exposed to varying secondary activities were examined in comparison to those in ponds that were left to nature. Comparing the sequence and phylogenetic analysis of the pmoA clone libraries at the different ponds (idle, lotus-cultivated and post-aquaculture), we found pmoA genes indicating the presence of type I and type II MOB at all study sites, but type Ib sequences affiliated with the Methylococcus/Methylocaldum lineage were most ubiquitous (46.7 % of clones). Based on rarefaction analysis and diversity indices, the disused mining pond with lotus culture was observed to harbor the highest richness of MOB. However, varying secondary activity or sample type did not show a strong variation in community patterns as compared to the ammonia oxidizers in our previous study.
    Matched MeSH terms: Methane/metabolism*
  10. Kawai M, Nagao N, Tajima N, Niwa C, Matsuyama T, Toda T
    Bioresour Technol, 2014 Apr;157:174-80.
    PMID: 24556370 DOI: 10.1016/j.biortech.2014.01.018
    Influence of the labile organic fraction (LOF) on anaerobic digestion of food waste was investigated in different S/I ratio of 0.33, 0.5, 1.0, 2.0 and 4.0g-VSsubstrate/g-VSinoculum. Two types of substrate, standard food waste (Substrate 1) and standard food waste with the supernatant (containing LOF) removed (Substrate 2) were used. Highest methane yield of 435ml-CH4g-VS(-1) in Substrate 1 was observed in the lowest S/I ratio, while the methane yield of the other S/I ratios were 38-73% lower than the highest yield due to acidification. The methane yields in Substrate 2 were relatively stable in all S/I conditions, although the maximum methane yield was low compared with Substrate 1. These results showed that LOF in food waste causes acidification, but also contributes to high methane yields, suggesting that low S/I ratio (<0.33) is required to obtain a reliable methane yield from food waste compared to other organic substrates.
    Matched MeSH terms: Methane/metabolism*
  11. Oskoueian E, Abdullah N, Oskoueian A
    Biomed Res Int, 2013;2013:349129.
    PMID: 24175289 DOI: 10.1155/2013/349129
    This research was carried out to evaluate the effects of flavone, myricetin, naringin, catechin, rutin, quercetin, and kaempferol at the concentration of 4.5% of the substrate (dry matter basis) on the rumen microbial activity in vitro. Mixture of guinea grass and concentrate (60 : 40) was used as the substrate. The results showed that all the flavonoids except naringin and quercetin significantly (P < 0.05) decreased the dry matter degradability. The gas production significantly (P < 0.05) decreased by flavone, myricetin, and kaempferol, whereas naringin, rutin, and quercetin significantly (P < 0.05) increased the gas production. The flavonoids suppressed methane production significantly (P < 0.05). The total VFA concentration significantly (P < 0.05) decreased in the presence of flavone, myricetin, and kaempferol. All flavonoids except naringin and quercetin significantly (P < 0.05) reduced the carboxymethyl cellulase, filter paperase, xylanase, and β -glucosidase activities, purine content, and the efficiency of microbial protein synthesis. Flavone, myricetin, catechin, rutin, and kaempferol significantly (P < 0.05) reduced the population of rumen microbes. Total populations of protozoa and methanogens were significantly (P < 0.05) suppressed by naringin and quercetin. The results of this research demonstrated that naringin and quercetin at the concentration of 4.5% of the substrate (dry matter basis) were potential metabolites to suppress methane production without any negative effects on rumen microbial fermentation.
    Matched MeSH terms: Methane/metabolism*
  12. Shehu MS, Abdul Manan Z, Alwi SR
    Bioresour Technol, 2012 Jun;114:69-74.
    PMID: 22444634 DOI: 10.1016/j.biortech.2012.02.135
    Optimization of thermo-alkaline disintegration of sewage sludge for enhanced biogas yield was carried out using response surface methodology (RSM) and Box-Behnken design of experiment. The individual linear and quadratic effects as well as the interactive effects of temperature, NaOH concentration and time on the degree of disintegration were investigated. The optimum degree of disintegration achieved was 61.45% at 88.50 °C, 2.29 M NaOH (24.23%w/w total solids) and 21 min retention time. Linear and quadratic effects of temperature are most significant in affecting the degree of disintegration. The coefficient of determination (R(2)) of 99.5% confirms that the model used in predicting the degree of disintegration process has a very good fitness with the experimental variables. The disintegrated sludge increased the biogas yield by 36%v/v compared to non-disintegrated sludge. The RSM with Box-Behnken design is an effective tool in predicting the optimum degree of disintegration of sewage sludge for increased biogas yield.
    Matched MeSH terms: Methane/metabolism*
  13. Poh PE, Chong MF
    Bioresour Technol, 2009 Jan;100(1):1-9.
    PMID: 18657414 DOI: 10.1016/j.biortech.2008.06.022
    Palm oil mill effluent (POME) is a highly polluting wastewater that pollutes the environment if discharged directly due to its high chemical oxygen demand (COD) and biochemical oxygen demand (BOD) concentration. Anaerobic digestion has been widely used for POME treatment with large emphasis placed on capturing the methane gas released as a product of this biodegradation treatment method. The anaerobic digestion method is recognized as a clean development mechanism (CDM) under the Kyoto protocol. Certified emission reduction (CER) can be obtained by using methane gas as a renewable energy. This review aims to discuss the various anaerobic treatments of POME and factors that influence the operation of anaerobic treatment. The POME treatment at both mesophilic and thermophilic temperature ranges are also analyzed.
    Matched MeSH terms: Methane/metabolism*
  14. Pedersen A
    Waste Manag Res, 2008 Feb;26(1):111-4.
    PMID: 18338708
    During 2006 the CDM market in Malaysia became established and by December 2007 a total of 20 Malaysian projects had registered with the CDM Executive Board. The Kyoto Protocol defines the Annex 1 countries, as countries that are obliged to reduce their greenhouse gas (GHG) emissions and the clean development mechanism (CDM) allows Annex 1 countries to develop projects, which contribute to emission reduction, in non-Annex 1 (developing) countries. Currently, two projects have been corrected due to request for review and there is one project for which review is requested. Two projects have been rejected by the Executive Board. The broad knowledge of CDM in Malaysia and the number of successful projects are partly due to the well-functioning CDM institutional framework in Malaysia. As an illustration this article focuses on a Malaysian-Danish project and describes the implementation of CDM in Malaysia and refers to this specific project. The project was registered with the CDM Executive Board in May 2007 and is a methane avoidance project in which methane is captured from a landfill and used to generate electricity.
    Matched MeSH terms: Methane/metabolism*
  15. Yacob S, Hassan MA, Shirai Y, Wakisaka M, Subash S
    Chemosphere, 2005 Jun;59(11):1575-81.
    PMID: 15894045
    Anthropogenic release of greenhouse gases, especially CO2 and CH4 has been recognized as one of the main causes of global warming. Several measures under the Kyoto Protocol 1997 have been drawn up to reduce the greenhouse gases emission. One of the measures is Clean Development Mechanisms (CDM) that was created to enable developed countries to cooperate with developing countries in emission reduction activities. In Malaysia, palm oil industry particularly from palm oil mill effluent (POME) anaerobic treatment has been identified as an important source of CH4. However, there is no study to quantify the actual CH4 emission from the commercial scale wastewater treatment facility. Hence, this paper shall address the CH4 emission from the open digesting tanks in Felda Serting Hilir Palm Oil Mill. CH4 emission pattern was recorded for 52 weeks from 3600 m3 open digesting tanks. The findings indicated that the CH4 content was between 13.5% and 49.0% which was lower than the value of 65% reported earlier. The biogas flow rate ranged between 0.8l min(-1)m(-2) and 9.8l min(-1)m(-2). Total CH4 emission per open digesting tank was 518.9 kgday(-1). Relationships between CH4 emission and total carbon removal and POME discharged were also discussed. Fluctuation of biogas production was observed throughout the studies as a result of seasonal oil palm cropping, mill activities, variation of POME quality and quantity discharged from the mill. Thus only through long-term field measurement CH4 emission can be accurately estimated.
    Matched MeSH terms: Methane/metabolism
  16. Cooper HV, Evers S, Aplin P, Crout N, Dahalan MPB, Sjogersten S
    Nat Commun, 2020 01 21;11(1):407.
    PMID: 31964892 DOI: 10.1038/s41467-020-14298-w
    Conversion of tropical peat swamp forest to drainage-based agriculture alters greenhouse gas (GHG) production, but the magnitude of these changes remains highly uncertain. Current emissions factors for oil palm grown on drained peat do not account for temporal variation over the plantation cycle and only consider CO2 emissions. Here, we present direct measurements of GHGs emitted during the conversion from peat swamp forest to oil palm plantation, accounting for CH4 and N2O as well as CO2. Our results demonstrate that emissions factors for converted peat swamp forest is in the range 70-117 t CO2 eq ha-1 yr-1 (95% confidence interval, CI), with CO2 and N2O responsible for ca. 60 and ca. 40% of this value, respectively. These GHG emissions suggest that conversion of Southeast Asian peat swamp forest is contributing between 16.6 and 27.9% (95% CI) of combined total national GHG emissions from Malaysia and Indonesia or 0.44 and 0.74% (95% CI) of annual global emissions.
    Matched MeSH terms: Methane/metabolism
  17. Mohd Azlan P, Jahromi MF, Ariff MO, Ebrahimi M, Candyrine SCL, Liang JB
    Trop Anim Health Prod, 2018 Mar;50(3):565-571.
    PMID: 29150805 DOI: 10.1007/s11250-017-1470-x
    The objectives of this study were to test the efficacy of producing lovastatin in rice straw treated with Aspergillus terreus in larger laboratory scale following the procedure previously reported and to investigate the effectiveness of the treated rice straw containing lovastatin on methane mitigation in goats. The concentration of lovastatin in the treated rice straw was 0.69 ± 0.05 g/kg dry matter (DM) rice straw. Our results showed that supplementation of lovastatin at 4.14 mg/kg BW reduced methane production by 32% while improving the DM digestibility by 13% (P 
    Matched MeSH terms: Methane/metabolism
  18. Moset V, Poulsen M, Wahid R, Højberg O, Møller HB
    Microb Biotechnol, 2015 Sep;8(5):787-800.
    PMID: 25737010 DOI: 10.1111/1751-7915.12271
    In this study, productivity and physicochemical and microbiological (454 sequencing) parameters, as well as environmental criteria, were investigated in anaerobic reactors to contribute to the ongoing debate about the optimal temperature range for treating animal manure, and expand the general knowledge on the relation between microbiological and physicochemical process indicators. For this purpose, two reactor sizes were used (10 m(3) and 16 l), in which two temperature conditions (35°C and 50°C) were tested. In addition, the effect of the hydraulic retention time was evaluated (16 versus 20 days). Thermophilic anaerobic digestion showed higher organic matter degradation (especially fiber), higher pH and higher methane (CH₄) yield, as well as better percentage of ultimate CH₄ yield retrieved and lower residual CH₄ emission, when compared with mesophilic conditions. In addition, lower microbial diversity was found in the thermophilic reactors, especially for Bacteria, where a clear intensification towards Clostridia class members was evident. Independent of temperature, some similarities were found in digestates when comparing with animal manure, including low volatile fatty acids concentrations and a high fraction of Euryarchaeota in the total microbial community, in which members of Methanosarcinales dominated for both temperature conditions; these indicators could be considered a sign of process stability.
    Matched MeSH terms: Methane/metabolism*
  19. Chan YJ, Chong MF, Law CL
    Bioresour Technol, 2012 Dec;125:145-57.
    PMID: 23026327 DOI: 10.1016/j.biortech.2012.08.118
    Thermophilic treatment of palm oil mill effluent (POME) was studied in a novel integrated anaerobic-aerobic bioreactor (IAAB). The IAAB was subjected to a program of steady-state operation over a range of organic loading rate (OLR)s, up to 30 g COD/L day in order to evaluate its treatment capacity. The thermophilic IAAB achieved high chemical oxygen demand (COD), biochemical oxygen demand (BOD) and total suspended solids (TSS) removal efficiencies of more than 99% for OLR up to 18.5 g COD/L day. High methane yield of 0.32 LCH(4) (STP)/g COD(removed) with compliance of the final treated effluent to the discharge limit were achieved. This is higher than that of the mesophilic system due to the higher maximum specific growth rate (μ(max)) of the thermophilic microorganisms. Besides, coupling the model of Grau second order model (anaerobic system) with the model of Monod (aerobic system) will completely define the IAAB system.
    Matched MeSH terms: Methane/metabolism*
  20. Yacob S, Ali Hassan M, Shirai Y, Wakisaka M, Subash S
    Sci Total Environ, 2006 Jul 31;366(1):187-96.
    PMID: 16125215
    The world currently obtains its energy from the fossil fuels such as oil, natural gas and coal. However, the international crisis in the Middle East, rapid depletion of fossil fuel reserves as well as climate change have driven the world towards renewable energy sources which are abundant, untapped and environmentally friendly. Malaysia has abundant biomass resources generated from the agricultural industry particularly the large commodity, palm oil. This paper will focus on palm oil mill effluent (POME) as the source of renewable energy from the generation of methane and establish the current methane emission from the anaerobic treatment facility. The emission was measured from two anaerobic ponds in Felda Serting Palm Oil Mill for 52 weeks. The results showed that the methane content was between 35.0% and 70.0% and biogas flow rate ranged between 0.5 and 2.4 L/min/m(2). Total methane emission per anaerobic pond was 1043.1 kg/day. The total methane emission calculated from the two equations derived from relationships between methane emission and total carbon removal and POME discharged were comparable with field measurement. This study also revealed that anaerobic pond system is more efficient than open digesting tank system for POME treatment. Two main factors affecting the methane emission were mill activities and oil palm seasonal cropping.
    Matched MeSH terms: Methane/metabolism
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links