Displaying all 16 publications

Abstract:
Sort:
  1. Tsuji T, Ono T, Taguchi H, Leong KH, Hayashi Y, Kumada S, et al.
    Chem Pharm Bull (Tokyo), 2023;71(7):576-583.
    PMID: 37394606 DOI: 10.1248/cpb.c23-00214
    Time-domain NMR (TD-NMR) was used for continuous monitoring of the hydration behavior of hydrophilic matrix tablets. The model matrix tablets comprised high molecular weight polyethylene oxide (PEO), hydroxypropyl methylcellulose (HPMC), and polyethylene glycol (PEG). The model tablets were immersed in water. Their T2 relaxation curves were acquired by TD-NMR with solid-echo sequence. A curve-fitting analysis was conducted on the acquired T2 relaxation curves to identify the NMR signals corresponding to the nongelated core remaining in the samples. The amount of nongelated core was estimated from the NMR signal intensity. The estimated values were consistent with the experiment measurement values. Next, the model tablets immersed in water were monitored continuously using TD-NMR. The difference in hydration behaviors of the HPMC and PEO matrix tablets was then characterized fully. The nongelated core of the HPMC matrix tablets disappeared more slowly than that of the PEO matrix tablets. The behavior of HPMC was significantly affected by the PEG content in the tablets. It is suggested that the TD-NMR method has potential to be utilized to evaluate the gel layer properties, upon replacement of the immersion medium: purified (nondeuterated) water is replaced with heavy (deuterated) water. Finally, drug-containing matrix tablets were tested. Diltiazem hydrochloride (a highly water-soluble drug) was employed for this experiment. Reasonable in vitro drug dissolution profiles, which were in accordance with the results from TD-NMR experiments, were observed. We concluded that TD-NMR is a powerful tool to evaluate the hydration properties of hydrophilic matrix tablets.
    Matched MeSH terms: Methylcellulose/chemistry
  2. Loh GO, Tan YT, Peh KK
    Carbohydr Polym, 2014 Jan 30;101:505-10.
    PMID: 24299805 DOI: 10.1016/j.carbpol.2013.09.084
    The effect of hydroxypropyl methylcellulose (HPMC) concentration on β-cyclodextrin (β-CD) solubilization of norfloxacin was examined. The solubility and dissolution of norfloxacin/β-CD and norfloxacin/β-CD/HPMC inclusion complexes were studied. The presence of β-CD increased significantly the solubility and dissolution of norfloxacin. The addition of HPMC until 5% (w/w) improved the solubilization of norfloxacin but further addition above 5% (w/w), decreased norfloxacin solubilization. Fourier transformed Infra-red (FTIR) showed that norfloxacin was successfully included into β-CD. Differential scanning calorimetry (DSC) showed that the norfloxacin endothermic peak shifted to a lower temperature with reduced intensity indicating the formation of inclusion complex. The addition of HPMC reduced further the intensity of norfloxacin endothermic peak. Most of the sharp and intense peaks of norfloxacin disappeared with the addition of HPMC. In conclusion, the concentration of hydrophilic polymer used to enhance β-CD solubilization of poorly soluble drugs is very critical.
    Matched MeSH terms: Methylcellulose/chemistry
  3. Aziz SB, Hamsan MH, Abdullah RM, Kadir MFZ
    Molecules, 2019 Jul 09;24(13).
    PMID: 31323966 DOI: 10.3390/molecules24132503
    In the present work, promising proton conducting solid polymer blend electrolytes (SPBEs) composed of chitosan (CS) and methylcellulose (MC) were prepared for electrochemical double-layer capacitor (EDLC) application with a high specific capacitance and energy density. The change in intensity and the broad nature of the XRD pattern of doped samples compared to pure CS:MC system evidencedthe amorphous character of the electrolyte samples. The morphology of the samples in FESEM images supported the amorphous behavior of the solid electrolyte films. The results of impedance and Bode plotindicate that the bulk resistance decreasedwith increasing salt concentration. The highest DC conductivity was found to be 2.81 × 10-3 S/cm. The electrical equivalent circuit (EEC) model was conducted for selected samples to explain the complete picture of the electrical properties.The performance of EDLC cells was examined at room temperature by electrochemical techniques, such as impedance spectroscopy, cyclic voltammetry (CV) and constant current charge-discharge techniques. It was found that the studied samples exhibit a very good performance as electrolyte for EDLC applications. Ions were found to be the dominant charge carriers in the polymer electrolyte. The ion transference number (tion) was found to be 0.84 while 0.16 for electron transference number (tel). Through investigation of linear sweep voltammetry (LSV), the CS:MC:NH4SCN system was found to be electrochemically stable up to 1.8 V. The CV plot revealed no redox peak, indicating the occurrence of charge double-layer at the surface of activated carbon electrodes. Specific capacitance (Cspe) for the fabricated EDLC was calculated using CV plot and charge-discharge analyses. It was found to be 66.3 F g-1 and 69.9 F g-1 (at thefirst cycle), respectively. Equivalent series resistance (Resr) of the EDLC was also identified, ranging from 50.0 to 150.0 Ω. Finally, energy density (Ed) was stabilized to anaverage of 8.63 Wh kg-1 from the 10th cycle to the 100th cycle. The first cycle obtained power density (Pd) of 1666.6 W kg-1 and then itdropped to 747.0 W kg-1 at the 50th cycle and continued to drop to 555.5 W kg-1 as the EDLC completed 100 cycles.
    Matched MeSH terms: Methylcellulose/chemistry
  4. Gan S, Zakaria S, Chia CH, Kaco H, Padzil FN
    Carbohydr Polym, 2014 Jun 15;106:160-5.
    PMID: 24721064 DOI: 10.1016/j.carbpol.2014.01.076
    Cellulose carbamate (CCs) was produced from kenaf core pulp (KCP) using microwave reactor-assisted method. The effects of urea concentration and reaction time on the formation of nitrogen content in CCs were investigated. The CCs' solubility in LiOH/urea system was determined and its membranes were characterized. As the urea content and reaction time increased, the nitrogen content form in CCs increased which enhanced the CCs' solubility. The formation of CCs was confirmed by Fourier transform infrared spectroscopy (FT-IR) and nitrogen content analysis. The CCs' morphology was examined using Scanning electron microscopy (SEM). The cellulose II and crystallinity index of the membranes were confirmed by X-ray diffraction (XRD). The pore size of the membrane displayed upward trend with respect to the urea content observed under Field emission scanning electron microscope (FESEM). This investigation provides a simple and efficient procedure of CCs determination which is useful in producing environmental friendly regenerated CCs.
    Matched MeSH terms: Methylcellulose/chemistry*
  5. Sarker ZI, Elgadir MA, Ferdosh S, Akanda JH, Manap MY, Noda T
    Molecules, 2012;17(5):5733-44.
    PMID: 22628045 DOI: 10.3390/molecules17055733
    The objective of this study was to investigate the effect of selected biopolymers on the rheological properties of surimi. In our paper, we highlight the functional properties and rheological aspects of some starch mixtures used in surimi. However, the influence of some other ingredients, such as cryoprotectants, mannans, and hydroxylpropylmethylcellulose (HPMC), on the rheological properties of surimi is also described. The outcome reveals that storage modulus increased with the addition of higher levels of starch. Moreover, the increasing starch level increased the breaking force, deformation, and gel strength of surimi as a result of the absorption of water by starch granules in the mixture to make the surimi more rigid. On the other hand, the addition of cryoprotectants, mannans, and HPMC improved the rheological properties of surimi. The data obtained in this paper could be beneficial particularly to the scientists who deal with food processing field.
    Matched MeSH terms: Methylcellulose/chemistry
  6. Nair A, Gupta R, Vasanti S
    Pharm Dev Technol, 2007;12(6):621-5.
    PMID: 18161635
    The present study is an attempt to formulate a controlled-release matrix tablet formulation for alfuzosin hydrochloride by using low viscous hydroxy propyl methyl cellulose (HPMC K-100 and HPMC 15cps) and its comparison with marketed product. Different batches of tablets containing 10 mg of alfuzosin were prepared by direct compression technique and evaluated for their physical properties, drug content, and in vitro drug release. All the formulations had a good physical integrity, and the drug content between the batches did not vary by more than 1%. Drug release from the matrix tablets was carried out for 12 hr and showed that the release rate was not highly significant with different ratios of HPMC K-100 and HPMC15cps. Similar dissolution profiles were observed between formulation F3 and the marketed product throughout the study period. The calculated regression coefficients showed a higher r2 value with zero-order kinetics and Higuchi model in all the cases. Although both the models could be applicable, zero-order kinetics seems to be better. Hence, it can be concluded that the use of low viscous hydrophilic polymer of different grades (HPMC K-100 and HPMC 15cps) can control the alfuzosin release for a period of 12 hr and was comparable to the marketed product.
    Matched MeSH terms: Methylcellulose/chemistry
  7. Saringat HB, Alfadol KI, Khan GM
    Pak J Pharm Sci, 2005 Jul;18(3):25-38.
    PMID: 16380341
    Coating has been widely used in pharmaceutical manufacture either as non-functional or a functional entity. The objectives of the present study were to investigate the effect of plasticizers such as PEG400, PEG1000 and triacetin on mechanical properties, glass transition temperature and water vapor transmission of free films prepared from HPMC and/or HPMC:PVA blends, to develop suitable coating system for tablets, and to determine the release profiles of the coated tablets. The tensile strength of plasticized HPMC films was generally lower than that of control HPMC film and could be attributed to increased crystallinity and segmental chain mobility of HPMC. This effect increased as the concentration of plasticizer increased. Generally the addition of both grades of polyethylene glycol (PEG400 & PEG1000) increased the moisture permeability of HPMC films but the films containing triacetin provided a more rigid barrier to moisture compared to unplasticized HPMC films. The dissolution profiles of paracetamol tablets coated with 7% w/v HPMC coating-solutions containing PEG400, PEG1000 and triacetin, and those containing PEG400 & PVA together showed that HPMC had weak water resistance. The presence of PEG400 and 1000 in HPMC films further weakened its resistance to solubility while the presence of triacetin caused a little increase in HPMC water resistance. From the results it was concluded that HPMC at 7%w/w concentration was suitable for film-coating intended for non-functional coating. Presence of the PEG 400, PEG1000 and triacetin as well as the presence of PVA and PEG400 together improved the coating properties of HPMC films and made it more suitable as a non-functional coating material.
    Matched MeSH terms: Methylcellulose/chemistry
  8. Wong TW, Deepak KG, Taib MN, Anuar NK
    Int J Pharm, 2007 Oct 1;343(1-2):122-30.
    PMID: 17597317
    The capacity of microwave non-destructive testing (NDT) technique to characterize the matrix property of binary polymeric films for use as transdermal drug delivery system was investigated. Hydroxypropylmethylcellulose (HPMC) and polyethylene glycol (PEG) 3000 were the choice of polymeric matrix and plasticizer, respectively with loratadine as the model drug. Both blank and drug loaded HPMC-PEG 3000 films were prepared using the solvent-evaporation method. These films were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using the established methods of ultra-violet spectrophotometry, differential scanning calorimetry and Fourier transform infrared spectroscopy methods, as well as, novel microwave NDT technique. Blank films exhibited a greater propensity of polymer-polymer interaction at the O-H domain upon storage at a lower level of relative humidity, whereas drug loaded films exhibited a greater propensity of polymer-polymer, polymer-plasticizer and/or drug-polymer interaction via the O-H, C-H and/or aromatic C=C functional groups when they were stored at a lower or moderate level of relative humidity. The absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer, polymer-plasticizer, and/or drug-polymer interaction of the matrix. The measurements of microwave NDT test at 8 and 12 GHz were sensitive to the polar fraction of film involving functional group such as O-H moiety and the less polar environment of matrix consisting of functional groups such as C-H and aromatic C=C moieties. The state of interaction between polymer, plasticizer and/or drug of a binary polymeric film can be elucidated through its absorption and transmission profiles of microwave.
    Matched MeSH terms: Methylcellulose/chemistry
  9. Peh KK, Wong CF
    J Pharm Pharm Sci, 1999 May-Aug;2(2):53-61.
    PMID: 10952770
    To investigate the suitability of an SCMC (sodium carboxymethyl cellulose/polyethylene glycol 400/carbopol 934P) and an HPMC (hydroxypropylmethyl cellulose/polyethylene glycol 400/carbopol 934P) films as drug vehicle for buccal delivery.
    Matched MeSH terms: Methylcellulose/chemistry
  10. Halim ALA, Kamari A, Phillip E
    Int J Biol Macromol, 2018 Dec;120(Pt A):1119-1126.
    PMID: 30176328 DOI: 10.1016/j.ijbiomac.2018.08.169
    In this work, chitosan, gelatin and methylcellulose films incorporated with tannic acid (TA) were synthesised, characterised and applied for the first time to preserve cherry tomatoes (Solanum lycopersicum var. cerasiforme) and grapes (Vitis vinifera). The addition of TA at 15% (w/w) increased the transparency value of biopolymer films. The highest increment of transparency value was obtained for MC-TA film, increased from 0.572 to 4.73 A/mm. Based on antimicrobial study, the addition of TA improved the antibacterial properties of biopolymers against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). The ability of films to preserve both fruits was evaluated in a 14-day preservation study. The application of biopolymer films treated with TA has decreased the weight loss and browning index of fruits, as compared to control films. A significant reduction in the weight loss of cherry tomatoes wrapped with chitosan (from 21.3 to 19.6%), gelatin (from 22.1 to 15.5%) and methylcellulose (26.2 to 20.5%) films were obtained following TA treatment. Overall, results obtained from this study highlight the effects of TA on physiochemical properties of biopolymer films and their ability to preserve fruits.
    Matched MeSH terms: Methylcellulose/chemistry*
  11. Peh KK, Wong CF
    Drug Dev Ind Pharm, 2000 Jul;26(7):723-30.
    PMID: 10872090
    Controlled-release grade hydroxypropylmethylcellulose (HPMC) or xanthan gum (XG) and microcrystalline cellulose (MCC) were employed to prepare controlled-release diltiazem hydrochloride tablets. The similarity factor f2 was used for dissolution profile comparison using Herbesser 90 SR as a reference product. Drug release could be sustained in a predictable manner by modifying the content of HPMC or XG. Moreover, the drug release profiles of tablets prepared using these matrix materials were not affected by pH and agitation rate. The f2 values showed that only one batch of tablets (of diltiazem HCl, HPMC or XG, and MCC in proportions of 3.0:3.0:4.0) was considered similar to that of the reference product, with values above 50. The unbiased similarity factor f2* values were not much different from the f2 values, ascribing to a small dissolution variance of the test and reference products. The amount of HPMC or XG incorporated to produce tablets with the desired dissolution profile could be determined from the curves of f2 versus polymer content. Hence, the f2 values can be applied as screening and optimization tools during development of controlled-release preparations.
    Matched MeSH terms: Methylcellulose/chemistry
  12. Ng SF, Jumaat N
    Eur J Pharm Sci, 2014 Jan 23;51:173-9.
    PMID: 24076463 DOI: 10.1016/j.ejps.2013.09.015
    Lyophilised wafers have been shown to have potential as a modern dressing for mucosal wound healing. The wafer absorbs wound exudates and transforms into a gel, thus providing a moist environment which is essential for wound healing. The objective of this study was to develop a carboxymethyl cellulose wafer containing antimicrobials to promote wound healing and treat wound infection. The pre-formulation studies began with four polymers, sodium carboxymethyl cellulose (NaCMC), methylcellulose (MC), sodium alginate and xanthan gum, but only NaCMC and MC were chosen for further investigation. The wafers were characterised by physical assessments, solvent loss, microscopic examination, swelling and hydration properties, drug content uniformity, drug release and efficacy of antimicrobials. Three of the antimicrobials, neomycin trisulphate salt hydrate, sulphacetamide sodium and silver nitrate, were selected as model drugs. Among the formulations, NaCMC wafer containing neomycin trisulphate exhibited the most desirable wound dressing characteristics (i.e., flexibility, sponginess, uniform wafer texture, high content drug uniformity) with the highest in vitro drug release and the greatest inhibition against both Gram positive and Gram negative bacteria. In conclusion, we successfully developed a NaCMC lyophilised wafer containing antimicrobials, and this formulation has potential for use in mucosal wounds infected with bacteria.
    Matched MeSH terms: Methylcellulose/chemistry
  13. Anuar NK, Wui WT, Ghodgaonkar DK, Taib MN
    J Pharm Biomed Anal, 2007 Jan 17;43(2):549-57.
    PMID: 16978823
    The applicability of microwave non-destructive testing (NDT) technique in characterization of matrix property of pharmaceutical films was investigated. Hydroxypropylmethylcellulose and loratadine were selected as model matrix polymer and drug, respectively. Both blank and drug loaded hydroxypropylmethylcellulose films were prepared using the solvent-evaporation method and were conditioned at the relative humidity of 25, 50 and 75% prior to physicochemical characterization using microwave NDT technique as well as ultraviolet spectrophotometry, differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopy (FT-IR) techniques. The results indicated that blank hydroxypropylmethylcellulose film exhibited a greater propensity of polymer-polymer interaction at the O-H and C-H domains of the polymer chains upon conditioned at a lower level of relative humidity. In the case of loratadine loaded films, a greater propensity of polymer-polymer and/or drug-polymer interaction via the O-H moiety was mediated in samples conditioned at the lower level of relative humidity, and via the C-H moiety when 50% relative humidity was selected as the condition for sample storage. Apparently, the absorption and transmission characteristics of both blank and drug loaded films for microwave varied with the state of polymer-polymer and/or drug-polymer interaction involving the O-H and C-H moieties. The measurement of microwave NDT test at 8GHz was sensitive to the chemical environment involving O-H moiety while it was greatly governed by the C-H moiety in test conducted at a higher frequency band of microwave. Similar observation was obtained with respect to the profiles of microwave NDT measurements against the state of polymer-polymer and/or drug-polymer interaction of hydroxypropylmethylcellulose films containing chlorpheniramine maleate. The microwave NDT measurement is potentially suitable for use as an apparent indicator of the state of polymer-polymer and drug-polymer interaction of the matrix.
    Matched MeSH terms: Methylcellulose/chemistry
  14. Wong CF, Yuen KH, Peh KK
    Int J Pharm, 1999 Feb 01;178(1):11-22.
    PMID: 10205621
    Controlled release buccal patches were fabricated using Eudragit NE40D and studied. Various bioadhesive polymers, namely hydroxypropylmethyl cellulose, sodium carboxymethyl cellulose and Carbopol of different grades, were incorporated into the patches, to modify their bioadhesive properties as well as the rate of drug release, using metoprolol tartrate as the model drug. The in-vitro drug release was determined using the USP 23 dissolution test apparatus 5 with slight modification, while the bioadhesive properties were evaluated using texture analyzer equipment with chicken pouch as the model tissue. The incorporation of hydrophilic polymers was found to affect the drug release as well as enhance the bioadhesiveness. Although high viscosity polymers can enhance the bioadhesiveness of the patches, they also tend to cause non-homogeneous distribution of the polymers and drug, resulting in non-predictable drug-release rates. Of the various bioadhesive polymers studied, Cekol 700 appeared to be most satisfactory in terms of modifying the drug release and enhancement of the bioadhesive properties.
    Matched MeSH terms: Methylcellulose/chemistry
  15. Taghizadeh Davoudi E, Ibrahim Noordin M, Kadivar A, Kamalidehghan B, Farjam AS, Akbari Javar H
    Biomed Res Int, 2013;2013:495319.
    PMID: 24288681 DOI: 10.1155/2013/495319
    Gastrointestinal disturbances, such as nausea and vomiting, are considered amongst the main adverse effects associated with oral anticancer drugs due to their fast release in the gastrointestinal tract (GIT). Sustained release formulations with proper release profiles can overcome some side effects of conventional formulations. The current study was designed to prepare sustained release tablets of Capecitabine, which is approved by the Food and Drug Administration (FDA) for the treatment of advanced breast cancer, using hydroxypropyl methylcellulose (HPMC), carbomer934P, sodium alginate, and sodium bicarbonate. Tablets were prepared using the wet granulation method and characterized such that floating lag time, total floating time, hardness, friability, drug content, weight uniformity, and in vitro drug release were investigated. The sustained release tablets showed good hardness and passed the friability test. The tablets' floating lag time was determined to be 30-200 seconds, and it floated more than 24 hours and released the drug for 24 hours. Then, the stability test was done and compared with the initial samples. In conclusion, by adjusting the right ratios of the excipients including release-retarding gel-forming polymers like HPMC K4M, Na alginate, carbomer934P, and sodium bicarbonate, sustained release Capecitabine floating tablet was formulated.
    Matched MeSH terms: Methylcellulose/chemistry
  16. Dua K, Pabreja K, Ramana MV
    Acta Pharm, 2010 Dec;60(4):467-78.
    PMID: 21169138 DOI: 10.2478/v1007-010-0036-5
    Aceclofenac is a new generation non-steroidal anti-inflammatory drug showing effective anti-inflammatory and analgesic properties. It is available in the form of tablets of 100 mg. Importance of aceclofenac as a NSAID has inspired development of topical dosage forms. This mode of administration may help avoid typical side effects associated with oral administration of NSAIDs, which have led to its withdrawal. Furthermore, aceclofenac topical dosage forms can be used as a supplement to oral therapy for better treatment of conditions such as arthritis. Ointments, creams, and gels containing 1% (m/m) aceclofenac have been prepared. They were tested for physical appearance, pH, spreadability, extrudability, drug content uniformity, in vitro diffusion and in vitro permeation. Gels prepared using Carbopol 940 (AF2, AF3) and macrogol bases (AF7) were selected after the analysis of the results. They were evaluated for acute skin irritancy, anti-inflammatory and analgesic effects using the carrageenan-induced thermal hyperalgesia and paw edema method. AF2 was shown to be significantly (p < 0.05) more effective in inhibiting hyperalgesia associated with inflammation, compared to AF3 and AF7. Hence, AF2 may be suggested as an alternative to oral preparations.
    Matched MeSH terms: Methylcellulose/chemistry
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links