Displaying all 8 publications

Abstract:
Sort:
  1. Ng AM, Westerman K, Kojima K, Kodoma S, Aminuddin BS, Ruszymah BH, et al.
    Med J Malaysia, 2008 Jul;63 Suppl A:7-8.
    PMID: 19024958
    Nerve stem cells have a unique characteristic in that they form spherical aggregates, also termed neurospheres, in vitro. The study demonstrated the successful derivation of these neurospheres from bone marrow culture. Their plasticity as nerve stem cells was confirmed. The findings further strengthens the pluripotency of cell populations within the bone marrow.
    Matched MeSH terms: Multipotent Stem Cells/cytology*
  2. Hamid AA, Joharry MK, Mun-Fun H, Hamzah SN, Rejali Z, Yazid MN, et al.
    Reprod Biol, 2017 Mar;17(1):9-18.
    PMID: 28262444 DOI: 10.1016/j.repbio.2017.02.001
    Amniotic fluid (AF) is now known to harbor highly potent stem cells, making it an excellent source for cell therapy. However, most of the stem cells isolated are from AF of mid-term pregnancies in which the collection procedure involves an invasive technique termed amniocentesis. This has limited the access in getting the fluid as the technique imposes certain level of risks to the mother as well as to the fetus. Alternatively, getting AF from full-term pregnancies or during deliveries would be a better resolution. Unfortunately, very few studies have isolated stem cells from AF at this stage of gestation, the fluid that is merely discarded. The question remains whether full-term AF harbors stem cells of similar potency as of the stem cells of mid-term AF. Here, we aim to review the prospect of having this type of stem cells by first looking at the origin and contents of AF particularly during different gestation period. We will then discuss the possibility that the AF, at full term, contains a population of highly potent stem cells. These stem cells are distinct from, and probably more potent than the AF mesenchymal stem cells (AF-MSCs) isolated from full-term AF. By comparing the studies on stem cells isolated from mid-term versus full-term AF from various species, we intend to address the prospect of having highly potent amniotic fluid stem cells from AF of full-term pregnancies in human and animals.
    Matched MeSH terms: Multipotent Stem Cells/cytology
  3. Tay LX, Lim CK, Mansor A, Kamarul T
    Int J Med Sci, 2014;11(1):24-33.
    PMID: 24396283 DOI: 10.7150/ijms.7244
    This preliminary study aims to determine the differentially expressed proteins from chondrogenic differentiated multipotent stromal cells (cMSCs) in comparison to undifferentiated multipotent stromal cells (MSCs) and adult chondrocytes (ACs).
    Matched MeSH terms: Multipotent Stem Cells/cytology
  4. Fariha MM, Chua KH, Tan GC, Tan AE, Hayati AR
    Cytotherapy, 2011 May;13(5):582-93.
    PMID: 21231803 DOI: 10.3109/14653249.2010.549121
    BACKGROUND AIMS: Fetal membrane from human placenta tissue has been described as a potential source of stem cells. Despite abundant literature on amnion stem cells, there are limited studies on the stem cell properties of chorion-derived stem cells.

    METHODS: The main aim was to determine the stemness properties of serial-passaged human chorion-derived stem cells (hCDSC). Quantitative polymerase chain reaction (PCR) was performed to reveal the following stemness gene expression in serial-passaged hCDSC: Oct-4, Sox-2, FGF-4, Rex-1, TERT, Nanog (3), Nestin, FZD-9, ABCG-2 and BST-1. Cell growth rate was evaluated from passage (P) 1 until P5. The colony-forming unit-fibroblast (CFU-F) frequency of P3 and P5 cells and multilineage differentiation potential of P5 cells were determined. The immunophenotype of hCDSC was compared using the surface markers CD9, CD31, CD34, CD44, CD45, CD73, CD90, CD117, HLA-ABC and HLA-DR, -DP and -DQ. Immunostaining for trophoblast markers was done on P0, P1, P3 and P5 cells to detect the contamination of trophoblasts in culture, while chromosomal abnormality was screened by cytogenetic analysis of P5 cells.

    RESULTS: The surface markers for mesenchymal lineage in hCDSC were more highly expressed at P5 compared with P3 and P0, indicating the increased purity of these stem cells after serial passage. Indeed, all the stemness genes except TERT were expressed at P1, P3 and P5 hCDSC. Furthermore, human chorion contained high clonogenic precursors with a 1:30 CFU-F frequency. Successful adipogenic, chondrogenic and osteogenic differentiation demonstrated the multilineage potential of hCDSC. The karyotyping analysis showed hCDSC maintained chromosomal stability after serial passage.

    CONCLUSIONS: hCDSC retain multipotent potential even at later passages, hence are a promising source for cell therapy in the future.

    Matched MeSH terms: Multipotent Stem Cells/cytology*
  5. Govindasamy V, Ronald VS, Totey S, Din SB, Mustafa WM, Totey S, et al.
    In Vitro Cell Dev Biol Anim, 2010 Oct;46(9):764-73.
    PMID: 20725801 DOI: 10.1007/s11626-010-9332-0
    Stem cells isolated from dental pulp possess the capacity for self-renewal and the potential for multi-lineage differentiation. However, dental pulp stem cells have different characteristics in terms of their culture conditions. The success of stem cells culture is governed by its micro-environmental niche. Therefore, we studied the effects of culture niche on long-term expansion of dental pulp stem cells in terms of cell morphology, growth kinetics, senescence pattern, cell surface marker expression differentiation capacity, and seeding plating density of dental pulp stem cells in four different, widely used media composition Among the various basal media tested, α-minimum essential media and knock out-minimum essential media supplemented with 10% fetal bovine serum were found to be the most optimal media composition in preserving the phenotypic characteristics and differentiation potential for prolonged periods as compared with DMEM-F12 and DMEM-LG. Plating density has been shown to affect overall yield. As a conclusion, the adoption of an appropriate culture system significantly improved cell yield, thus enabling the attainment of sufficient yields for therapeutic applications economizing in terms of cost of production and minimizing seeding cell density for maximum yield.
    Matched MeSH terms: Multipotent Stem Cells/cytology*
  6. Gao L, Thilakavathy K, Nordin N
    Cell Biol Int, 2013 Sep;37(9):875-87.
    PMID: 23619972 DOI: 10.1002/cbin.10120
    At the early stages of mammalian development, a number of developmentally plastic cells appear that possess the ability to give rise to all of the differentiated cell types normally derived from the three primary germ layers - unique character known as pluripotency. To date, embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) have been shown to be truly pluripotent. However, recent studies have revealed a variety of other cells that demonstrate pluripotentiality, including very small embryonic-like stem cells (VSELs), amniotic fluid stem cells (AFSCs), marrow-isolated adult multilineage inducible cells (MIAMI) and multipotent adult precursor cells (MAPCs). This review summarises key features of these six kinds of pluripotent and potentially pluripotent stem cells (ESCs, iPSCs, VSELs, AFSCs, MIAMI and MAPCs) and the evidence for their pluripotency properties.
    Matched MeSH terms: Multipotent Stem Cells/cytology*
  7. Ude CC, Shamsul BS, Ng MH, Chen HC, Ohnmar H, Amaramalar SN, et al.
    Exp Gerontol, 2018 04;104:43-51.
    PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020
    BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

    METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

    RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

    CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

    Matched MeSH terms: Multipotent Stem Cells/cytology
  8. Lim MN, Hussin NH, Othman A, Umapathy T, Baharuddin P, Jamal R, et al.
    Mol Vis, 2012;18:1289-300.
    PMID: 22665977
    The presence of multipotent human limbal stromal cells resembling mesenchymal stromal cells (MSC) provides new insights to the characteristic of these cells and its therapeutic potential. However, little is known about the expression of stage-specific embryonic antigen 4 (SSEA-4) and the embryonic stem cell (ESC)-like properties of these cells. We studied the expression of SSEA-4 surface protein and the various ESC and MSC markers in the ex vivo cultured limbal stromal cells. The phenotypes and multipotent differentiation potential of these cells were also evaluated.
    Matched MeSH terms: Multipotent Stem Cells/cytology*
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links