Affiliations 

  • 1 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp 57000, K.L, Malaysia
  • 2 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
  • 3 Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Malaysia. Electronic address: chen@vet.upm.edu.my
  • 4 Rehab Unit, Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
  • 5 Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia. Electronic address: Rizal@ppukm.UKM.edu.my
  • 6 Department of Orthopedic & Traumatology, Universiti Kebangsaan Malaysia Medical Center, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia
  • 7 Bioartificial Organ and Regenerative Medicine Unit, National Defence University of Malaysia, Sungai Besi Camp 57000, K.L, Malaysia
  • 8 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; ENT Consultant Clinic, Ampang Putri Specialist Hospital, 68000 Ampang, Malaysia
  • 9 Tissue Engineering Centre, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif, Bandar Tun Razak, Cheras 56000, K.L, Malaysia; Department of Physiology, Medical Faculty, Universiti Kebangsaan Malaysia Medical Centre, Jalan Yaacob Latif Bandar Tun Razak Muda Abdul Aziz, Campus, 56000 K.L, Malaysia.. Electronic address: ruszymah@ppukm.ukm.edu.my
Exp Gerontol, 2018 04;104:43-51.
PMID: 29421350 DOI: 10.1016/j.exger.2018.01.020

Abstract

BACKGROUND: Hyaline articular cartilage, which protects the bones of diarthrodial joints from forces associated with load bearing, frictions, and impacts has very limited capacities for self-repair. Over the years, the trend of treatments has shifted to regenerations and researchers have been on the quest for a lasting regeneration. We evaluated the treatment of osteoarthritis by chondrogenically induced ADSCs and BMSCs for a long time functional recovery.

METHODS: Osteoarthritis was induced at the right knee of sheep by complete resection of ACL and medial meniscus. Stem cells from sheep were induced to chondrogenic lineage. Test sheep received 5 mls single doses of 2 × 107 autologous PKH26-labelled ADSCs or BMSCs, while controls received basal medium. Functional recovery of the knees was evaluated via electromyography.

RESULTS: Induced ADSCs had 625, 255, 393, 908, 409, 157 and 1062 folds increases of collagen I, collagen II, aggrecan, SOX9, cartilage oligomeric protein, chondroadherin and fibromodullin compare to uninduced cells, while BMSCs had 702, 657, 321, 276, 337, 233 and 1163 respectively; p = .001. Immunocytochemistry was positive for these chondrogenic markers. 12 months post-treatment, controls scored 4 in most regions using ICRS, while the treated had 8; P = .001. Regenerated cartilages were positive to PKH26 and demonstrated the presence of condensing cartilages on haematoxylin and eosin; and Safranin O. OA degenerations caused significant amplitude shift from right to left hind limb. After treatments, controls persisted with significant decreases; while treated samples regained balance.

CONCLUSIONS: Both ADSCs and BMSCs had increased chondrogenic gene expressions using TGF-β3 and BMP-6. The treated knees had improved cartilage scores; PKH26 can provide elongated tracking, while EMG results revealed improved joint recoveries. These could be suitable therapies for osteoarthritis.

* Title and MeSH Headings from MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.