Displaying publications 1 - 20 of 220 in total

  1. Teh JL, Abdul Rahman SF, Domnic G, Satiyasilan L, Chear NJY, Singh D, et al.
    BMC Res Notes, 2021 Aug 13;14(1):310.
    PMID: 34389056 DOI: 10.1186/s13104-021-05727-0
    OBJECTIVE: The spheroid model provides a physiological platform to study cancer cell biology and drug sensitivity. Usage of bovine collagen I for spheroid assays is costly especially when experiments are conducted in 24-well plates, as high volume of bovine collagen I is needed. The aim of the study was to downsize spheroid assays to a microfluidic 3D cell culture chip and compare the growth, invasion and response to drug/compound of spheroids embedded in the 3D chip to spheroids embedded in 24-well plates.

    RESULTS: Spheroids generated from nasopharyngeal carcinoma cell line HK-1 continuously grew and invaded into collagen matrix in a 24-well plate. Similar observations were noticed with spheroids embedded in the 3D chip. Large spheroids in both 24-well plate and the 3D chip disintegrated and invaded into the collagen matrix. Preliminary drug sensitivity assays showed that the growth and invasion of spheroids were inhibited when spheroids were treated with combination of cisplatin and paynantheine at high concentrations, in a 24-well plate. Comparable findings were obtained when spheroids were treated with the same drug combination in the 3D chip. Moving forward, spheroid assays could be performed in the 3D chip in a more high-throughput manner with minimal time and cost.

    Matched MeSH terms: Cell Culture Techniques*
  2. Yap WH, Teoh ML, Tang YQ, Goh BH
    Biochem Mol Biol Educ, 2021 09;49(5):685-691.
    PMID: 34291546 DOI: 10.1002/bmb.21562
    This study presents an evaluation of integrating virtual laboratory simulations in assessment design of a biotechnology course at Taylor's University in Malaysia before, during and post-COVID recovery phases. The purpose was to investigate how virtual laboratory simulations were integrated as part of the assessments of a practical-embedded course-the aim being to evaluate students' acceptance and perception of using virtual simulation. A total of 46 students, across three different study cohorts (August 2019, March 2020, and August 2020) were evaluated different educational aspects of using virtual laboratory cases in a 4-week course within Animal Biotechnology. Overall, students regarded virtual laboratory simulation useful as part of their learning, and there is a significant increase in the level of acceptance before, during and post-COVID recovery phases. The study showed that across the different study cohorts, students perceived their confidence level in laboratory skills have been enhanced and that they can apply the skills in real-life situation. Interestingly, students (March and August 2020 cohort) who have not been exposed to the related laboratory session still perceived that the simulated activity provides clear explanation and realistic experience. Furthermore, it had been highlighted across the study cohorts that the quiz questions helped to enhance their understanding on the underlying principles of the laboratory techniques. The overall conclusion of this study was that structured simulation-based activities which provide clear instructions and explanation would support significant improvements in students learning.
    Matched MeSH terms: Cell Culture Techniques*
  3. Ho SY, Goh CW, Gan JY, Lee YS, Lam MK, Hong N, et al.
    Zebrafish, 2014 Oct;11(5):407-20.
    PMID: 24967707 DOI: 10.1089/zeb.2013.0879
    Existing zebrafish embryonic stem (ES) cell lines are derived and maintained using feeder layers. We describe here the derivation and long-term culture of an ES cell-like line derived from zebrafish blastomeres without the use of feeder cells. This line, designated as ZES1, has been maintained for more than 800 days in defined Dulbecco's modified Eagle's medium supplemented with fetal bovine serum, zebrafish embryo extract, trout serum, and human basic fibroblast growth factor. ZES1 cells possessed a morphology typical of ES cells, being round or polygonal in shape with a large nucleus and sparse cytoplasm and were mostly diploid. The cells formed individual colonies consisting of tightly packed cells that stained positively for alkaline phosphatase. ZES1 cells also formed embryoid bodies when transferred onto uncoated wells. The pluripotent nature of ZES1 cells was confirmed when they could be induced to differentiate in vitro into several cell types, through low- or high-density culture conditions. Treatment with retinoic acid also induced the differentiation of ZES1 cells into primarily neuronal cells. Using immunostaining and real-time polymerase chain reaction, we showed that Sox2, a known pluripotent marker in mammalian ES cells, was also present in ZES1 cells. Chimera experiments revealed that fluorescent-labeled ZES1 cells microinjected into zebrafish blastulas participated in the formation of all three germ layers. Using GFP-labeled ZES1 cells, chimera germline transmission was also demonstrated at the F1 generation. In conclusion, ZES1 cells possess both in vitro and in vivo pluripotency characteristics, indicating that nonmammalian ES cells can be readily derived and maintained for a long term under feeder-free culture conditions.
    Matched MeSH terms: Cell Culture Techniques/methods*
  4. Salehinejad P, Alitheen NB, Nematollahi-Mahani SN, Ali AM, Omar AR, Janzamin E, et al.
    Cytotherapy, 2012 Sep;14(8):948-53.
    PMID: 22587592 DOI: 10.3109/14653249.2012.684377
    BACKGROUND AIMS: Mesenchymal stromal cells (MSC) have been isolated from a number of different tissues, including umbilical cord. Because of the lack of a uniform approach to human umbilical cord matrix-derived mesenchymal (hUCM) cell expansion, we attempted to identify the optimum conditions for the production of a high quantity of hUCM cells by comparing two media.

    METHODS: We compared the ability of Dulbecco's Modified Eagle's Medium/F12 (DMEM/F12) and Alpha Minimum Essential Medium (α-MEM) with Glutamax (GL) (α-MEM/GL) to expand hUCM cells. For this purpose, hUCM cells were cultured in plates containing different culture media supplemented with 10% fetal bovine serum (FBS). Culture dishes were left undisturbed for 10-14 days to allow propagation of the newly formed hUCM cells. The expansion properties, CD marker expression, differentiation potential, population doubling time (PDT) and cell activity were compared between the two groups.

    RESULTS: The hUCM cells harvested from each group were positive for MSC markers, including CD44, CD90 and CD105, while they were negative for the hematopoietic cell surface marker CD34. Differentiation into adipogenic and osteogenic lineages was confirmed for both treatments. Cell activity was higher in the α-MEM/GL group than the DMEM/F12 group. PDT was calculated to be 60 h for the DMEM/F12 group, while for the α-MEM/GL group it was 47 h.

    CONCLUSIONS: Our data reveal that α-MEM/GL with 10% FBS supports hUCM cell growth more strongly than DMEM/F12 with 10% FBS.

    Matched MeSH terms: Cell Culture Techniques*
  5. Chua KB, Chua IL, Chua IE, Chong KH, Chua KH
    Malays J Pathol, 2005 Dec;27(2):99-105.
    PMID: 17191392
    A mycological medium was developed for primary isolation and culture of lipophilic yeasts. It was initially based on published information of nutrients and trace components that would promote the growth of these yeasts. It was subsequently modified and adjusted to specifically promote the growth of lipophilic yeasts and simultaneously avoid the luxurious growth of other fungi and bacteria. With this medium, the conventional bacteriological procedures such as microbial streaking for pure culture and anti-microbial sensitivity testing could be carried out for these lipophilic yeasts.
    Matched MeSH terms: Cell Culture Techniques/methods*
  6. Chua KB, Chua KH, Chua IL, Chen KF
    Malays J Pathol, 2004 Jun;26(1):69-71.
    PMID: 16190110
    Virus isolation and accurate characterization plays a crucial role in the rapid identification of the causative agents of infectious disease outbreaks especially if the causative viruses are novel where no pre-existing diagnostic reagents would be available. A new cell culture tube, named Jui Meng (JM) Cell Culture Tube, was developed to reduce the cost and improve the efficiency and biosafety of work pertaining to virus isolation. The design of the tube is based heavily on the principle of practicability, functionality, biosafety and long-term cost saving for diagnostic laboratory work in virus isolation. It is designed to culture an initial inoculum of one milliliter of culture medium containing 1 x 10(4) to 1 x 10(5) cells/ml.
    Matched MeSH terms: Cell Culture Techniques/instrumentation*
  7. Ramasamy TS, Ong ALC, Cui W
    Adv Exp Med Biol, 2018 10 26;1077:41-66.
    PMID: 30357683 DOI: 10.1007/978-981-13-0947-2_4
    Generation of functional hepatocytes from human pluripotent stem cells (hPSCs) is a vital tool to produce large amounts of human hepatocytes, which hold a great promise for biomedical and regenerative medicine applications. Despite a tremendous progress in developing the differentiation protocols recapitulating the developmental signalling and stages, these resulting hepatocytes from hPSCs yet achieve maturation and functionality comparable to those primary hepatocytes. The absence of 3D milieu in the culture and differentiation of these hepatocytes may account for this, at least partly, thus developing an optimal 3D culture could be a step forward to achieve this aim. Hence, review focuses on current development of 3D culture systems for hepatic differentiation and maturation and the future perspectives of its application.
    Matched MeSH terms: Cell Culture Techniques/trends*
  8. Gantait S, El-Dawayati MM, Panigrahi J, Labrooy C, Verma SK
    Appl Microbiol Biotechnol, 2018 Oct;102(19):8229-8259.
    PMID: 30054703 DOI: 10.1007/s00253-018-9232-x
    Date palm (Phoenix dactylifera L.) is one of the most important fruit trees that contribute a major part to the economy of Middle East and North African countries. It is quintessentially called "tree of life" owing to its resilience to adverse climatic conditions, along with manifold nutritional-cum-medicinal attributes that comes from its fruits and other plant parts. Being a tree with such immense utility, it has gained substantial attention of tree breeders for its genetic advancement via in vitro biotechnological interventions. Herein, an extensive review of biotechnological research advances in date palm has been consolidated as one of the major research achievements during the past two decades. This article compares the different biotechnological techniques used in this species such as: tissue and organ culture, bioreactor-mediated large-scale propagation, cell suspension culture, embryogenic culture, protoplast culture, conservation (for short- and long-term) of germplasms, in vitro mutagenesis, in vitro selection against biotic and abiotic stresses, secondary metabolite production in vitro, and genetic transformation. This review provides an insight on crop improvement and breeding programs for improved yield and quality fruits; besides, it would undeniably facilitate the tissue culture-based research on date palm for accelerated propagation and enhanced production of quality planting materials, along with conservation and exchange of germplasms, and genetic engineering. In addition, the unexplored research methodologies and major bottlenecks identified in this review should be contemplated on in near future.
    Matched MeSH terms: Cell Culture Techniques/methods
  9. Ravanfar SA, Orbovic V, Moradpour M, Abdul Aziz M, Karan R, Wallace S, et al.
    Biotechnol Genet Eng Rev, 2017 Apr;33(1):1-25.
    PMID: 28460558 DOI: 10.1080/02648725.2017.1309821
    Development of in vitro plant regeneration method from Brassica explants via organogenesis and somatic embryogenesis is influenced by many factors such as culture environment, culture medium composition, explant sources, and genotypes which are reviewed in this study. An efficient in vitro regeneration system to allow genetic transformation of Brassica is a crucial tool for improving its economical value. Methods to optimize transformation protocols for the efficient introduction of desirable traits, and a comparative analysis of these methods are also reviewed. Hence, binary vectors, selectable marker genes, minimum inhibitory concentration of selection agents, reporter marker genes, preculture media, Agrobacterium concentration and regeneration ability of putative transformants for improvement of Agrobacterium-mediated transformation of Brassica are discussed.
    Matched MeSH terms: Cell Culture Techniques/methods*
  10. Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Rahmah N
    Trop Biomed, 2010 Apr;27(1):125-30.
    PMID: 20562822
    In vitro culture of Toxoplasma gondii can provide tachyzoites which are active, viable and with desirable purity. Thus the aim of this study was to optimize the cell culture method for T. gondii propagation to obtain a consistent source of parasites with maximum yield and viability, but minimum host cell contamination for use in production of excretory-secretory antigen. Tachyzoites with seed counts of 1x10(6), 1x10(7) and 1x10(8) harvested from infected mice were added to VERO cells of different degrees of confluence, namely 50%, 85% and 100%, and examined periodically using an inverted microscope. When the maximum release of the tachyzoites was observed from the host cells, the culture supernatant was removed and the tachyzoites harvested. Using a Neubauer chamber, the percentages of viable tachyzoites and host cell contamination were determined using trypan blue stain. Parameters that gave the best yield and purity of viable tachyzoites were found to be as follows: VERO cells at 85% confluence in DMEM medium and inoculum comprising 1x10(7) tachyzoites. After about 3 days post infection, the tachyzoites multiplied 78x, with a yield of ~7.8x10(8) per flask, 99% viability and 3% host cell contamination. This study has successfully optimized the method of propagation of T. gondii tachyzoites in VERO cells which produce parasites with high yield, purity and viability.
    Matched MeSH terms: Cell Culture Techniques/methods*
  11. Abdullah MA, Ariff AB, Marziah M, Ali AM, Lajis NH
    J Agric Food Chem, 2000 Sep;48(9):4432-8.
    PMID: 10995375
    The effects of medium strategy, number of impellers, aeration mode, and mode of operation on Morinda elliptica cell suspension cultures in a stirred-tank bioreactor are described. A lower number of impellers and continuous aeration contributed toward high cell growth rate, whereas a higher number of impellers reduced cell growth rate, although not anthraquinone yield. The semicontinuous mode could indirectly imitate the larger scale version of production medium strategy and improved anthraquinone production even with 0. 012% (v/v) antifoam addition. Production medium promoted both growth (maximum dry cell weight of 24.6 g/L) and anthraquinone formation (maximum content of 19.5 mg/g of dry cell weight), without any necessity for antifoam addition. Cultures in production medium or with higher growth rate and anthraquinone production were less acidic than cultures in growth medium or with lower growth rate and anthraquinone production. Using the best operating variables, growth of M. elliptica cells (24.6 g/L) and anthraquinone yield (0.25 g/L) were 45% and 140%, respectively, lower than those using a shake flask culture after 12 days of cultivation.
    Matched MeSH terms: Cell Culture Techniques
  12. El Enshasy HA, Elsayed EA, Suhaimi N, Malek RA, Esawy M
    BMC Biotechnol, 2018 11 09;18(1):71.
    PMID: 30413198 DOI: 10.1186/s12896-018-0481-7
    BACKGROUND: Pectinase enzymes present a high priced category of microbial enzymes with many potential applications in various food and oil industries and an estimated market share of $ 41.4 billion by 2020.

    RESULTS: The production medium was first optimized using a statistical optimization approach to increase pectinase production. A maximal enzyme concentration of 76.35 U/mL (a 2.8-fold increase compared with the initial medium) was produced in a medium composed of (g/L): pectin, 32.22; (NH4)2SO4, 4.33; K2HPO4, 1.36; MgSO4.5H2O, 0.05; KCl, 0.05; and FeSO4.5H2O, 0.10. The cultivations were then carried out in a 16-L stirred tank bioreactor in both batch and fed-batch modes to improve enzyme production, which is an important step for bioprocess industrialization. Controlling the pH at 5.5 during cultivation yielded a pectinase production of 109.63 U/mL, which was about 10% higher than the uncontrolled pH culture. Furthermore, fed-batch cultivation using sucrose as a feeding substrate with a rate of 2 g/L/h increased the enzyme production up to 450 U/mL after 126 h.

    CONCLUSIONS: Statistical medium optimization improved volumetric pectinase productivity by about 2.8 folds. Scaling-up the production process in 16-L semi-industrial stirred tank bioreactor under controlled pH further enhanced pectinase production by about 4-folds. Finally, bioreactor fed-batch cultivation using constant carbon source feeding increased maximal volumetric enzyme production by about 16.5-folds from the initial starting conditions.

    Matched MeSH terms: Batch Cell Culture Techniques/instrumentation; Batch Cell Culture Techniques/methods*
  13. Chan LK, Koay SS, Boey PL, Bhatt A
    Biol. Res., 2010;43(1):127-35.
    PMID: 21157639 DOI: /S0716-97602010000100014
    Plant cell cultures could be used as an important tool for biochemical production, ranging from natural coloring (pigments) to pharmaceutical products. Anthocyanins are becoming a very important alternative to synthetic dyes because of increased public concern over the safety of artificial food coloring agents. Several factors are responsible for the production of anthocyanin in cell cultures. In the present study, we investigate the effects of different environmental factors, such as light intensity, irradiance (continuous irradiance or continuous darkness), temperature and medium pH on cell biomass yield and anthocyanin production in cultures of Melastoma malabathricum. Moderate light intensity (301 - 600 lux) induced higher accumulation of anthocyanins in the cells. The cultures exposed to 10-d continuous darkness showed the lowest pigment content, while the cultures exposed to 10-d continuous irradiance showed the highest pigment content. The cell cultures incubated at a lower temperature range (20 ± 2 ºC) grew better and had higher pigment content than those grown at 26 ± 2 ºC and 29 ± 2 ºC. Different medium pH did not affect the yield of cell biomass but anthocyanin accumulation was highest at pH 5.25 - 6.25.
    Matched MeSH terms: Cell Culture Techniques
  14. Selvaratnam L, Abd Rahim S, Kamarul T, Chan KY, Sureshan S, Penafort R, et al.
    Med J Malaysia, 2005 Jul;60 Suppl C:49-52.
    PMID: 16381284
    In view of poor regeneration potential of the articular cartilage, in-vitro engineering of cartilage tissue offers a promising option for progressive joint disease. This study aims to develop a biologically engineered articular cartilage for autologous transplantation. The initial work involved determination of chondrocyte yield and viability, and morphological analysis. Cartilage was harvested from the knee, hip and shoulder joints of adult New Zealand white rabbits and chondrocytes were isolated by enzymatic digestion of the extra-cellular matrix before serial cultivation in DMEM/Ham's F12 media as monolayer cultures. No differences were noted in cell yield. Although chondrocytes viability was optimal (>93%) following harvest from native cartilage, their viability tended to be lowered on passaging. Chondrocytes aggregated in isogenous colonies comprising ovoid cells with intimate intracellular contacts and readily exhibited Safranin-O positive matrix; features typically associated with articular cartilage in-vivo. However, chondrocytes also existed concurrently in scattered bipolar/multipolar forms lacking Safranin-O expression. Therefore, early data demonstrated successful serial culture of adult chondrocytes with differentiated morphology seen in established chondrocyte colonies synthesizing matrix proteoglycans.
    Matched MeSH terms: Cell Culture Techniques
  15. Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, et al.
    Biomaterials, 2016 Jan;76:76-86.
    PMID: 26519650 DOI: 10.1016/j.biomaterials.2015.10.039
    Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.
    Matched MeSH terms: Cell Culture Techniques
  16. Dashti MG, Abdeshahian P
    Saudi J Biol Sci, 2016 Mar;23(2):172-80.
    PMID: 26980997 DOI: 10.1016/j.sjbs.2015.02.006
    This research was performed based on a comparative study on fungal lipid production by a locally isolated strain Cunninghamella bainieri 2A1 in batch culture and repeated-batch culture using a nitrogen-limited medium. Lipid production in the batch culture was conducted to study the effect of different agitation rates on the simultaneous consumption of ammonium tartrate and glucose sources. Lipid production in the repeated-batch culture was studied by considering the effect of harvesting time and harvesting volume of the culture broth on the lipid accumulation. The batch cultivation was carried out in a 500 ml Erlenmeyer flask containing 200 ml of the fresh nitrogen-limited medium. Microbial culture was incubated at 30 °C under different agitation rates of 120, 180 and 250 rpm for 120 h. The repeated-batch culture was performed at three harvesting times of 12, 24 and 48 h using four harvesting cultures of 60%, 70%, 80% and 90%. Experimental results revealed that nitrogen source (ammonium tartrate) was fully utilized by C. bainieri 2A1 within 24 h in all agitation rates tested. It was also observed that a high amount of glucose in culture medium was consumed by C. bainieri 2A1 at 250 rpm agitation speed during the batch fermentation. Similar results showed that the highest lipid concentration of 2.96 g/L was obtained at an agitation rate of 250 rpm at 120 h cultivation time with the maximum lipid productivity of 7.0 × 10(-2) mg/ml/h. On the other hand, experimental results showed that the highest lipid concentration produced in the repeated-batch culture was 3.30 g/L at the first cycle of 48 h harvesting time using 70% harvesting volume, while 0.23 g/L gamma-linolenic acid (GLA) was produced at the last cycle of 48 h harvesting time using 80% harvesting volume.
    Matched MeSH terms: Batch Cell Culture Techniques
  17. Radzun KA, Wolf J, Jakob G, Zhang E, Stephens E, Ross I, et al.
    PMID: 25984234 DOI: 10.1186/s13068-015-0238-7
    BACKGROUND: Microalgae provide an excellent platform for the production of high-value-products and are increasingly being recognised as a promising production system for biomass, animal feeds and renewable fuels.

    RESULTS: Here, we describe an automated screen, to enable high-throughput optimisation of 12 nutrients for microalgae production. Its miniaturised 1,728 multiwell format allows multiple microalgae strains to be simultaneously screened using a two-step process. Step 1 optimises the primary elements nitrogen and phosphorous. Step 2 uses Box-Behnken analysis to define the highest growth rates within the large multidimensional space tested (Ca, Mg, Fe, Mn, Zn, Cu, B, Se, V, Si) at three levels (-1, 0, 1). The highest specific growth rates and maximum OD750 values provide a measure for continuous and batch culture.

    CONCLUSION: The screen identified the main nutrient effects on growth, pairwise nutrient interactions (for example, Ca-Mg) and the best production conditions of the sampled statistical space providing the basis for a targeted full factorial screen to assist with optimisation of algae production.

    Matched MeSH terms: Batch Cell Culture Techniques
  18. Ang HH, Chan KL, Mak JW
    Chemotherapy, 1997 Sep-Oct;43(5):311-5.
    PMID: 9309363 DOI: 10.1159/000239583
    Eleven Malaysian Plasmodium falciparum isolates were cultured in vitro and later subjected to antimalarial evaluations in 96-well microtiter plates. After cryopreservation, the IC50 (nM) for ST 195, ST 196, ST 197, ST 244 and ST 245 isolates were, respectively: 180.9, 198.7, 482.0, 580.0 and 690.1 for chloroquine; 3.4, 3.4, 9.2, 4.0 and 5.8 for mefloquine; 21.9, 10.5, 40.7, 40.1 and 48.7 for quinine; 136.7, 58.8, 116.4, 29.4 and 95.4 for cycloguanil, and 48.3, 57.5, 47.4, 61.5 and 37.8 for pyrimethamine. Before cryopreservation they were 172.5, 141.5, 453.2, 636.0 and 651.6 nM for chloroquine; 4.8, 2.6, 9.0, 6.9 and 5.8 nM for mefloquine; 21.3, 8.3, 41.9, 49.6 and 40.1 nM for quinine, 129.9, 47.3, 109.3, 30.6 and 95.4 nM for cycloguanil, and 45.4, 47.4, 40.2, 66.3 and 36.0 nM for pyrimethamine. IC50 (nM) for Gombak A, Gombak C, ST 9, ST 12, ST 85 and ST 148 isolates after 12 months of continuous in vitro culture were, respectively: 477.0, 492.3, 367.1, 809.4, 566.5 and 341.8 for chloroquine; 2.9, 11.1, 8.5, 16.9, 5.3 and 4.2 for mefloquine; 6.2, 58.3, 52.7, 36.7, 31.8 and 26.2 for quinine; 154.5, 57.2, 130.3, 94.2, 81.4 and 102.9 for cycloguanil, 26.9, 24.9, 43.8, 31.0, 14.1 and 56.7 for pyrimethamine. Before the 12-month culture they were 472.3, 452.9, 352.7, 773.7, 702.7 and 322.7 nM for chloroquine; 2.6, 13.2, 8.5, 17.2, 5.0 and 4.0 nM for mefloquine; 6.2, 85.4, 53.9, 38.5, 35.8 and 38.5 nM for quinine; 106.8, 74.3, 112.4, 89.8, 91.8 and 103.3 nM for cycloguanil, and 26.9, 31.4, 47.0, 28.1, 14.9 and 56.7 nM for pyrimethamine. Thus none of these isolates differed in their original susceptibilities after either of these procedures.
    Matched MeSH terms: Cell Culture Techniques
  19. Boo, L., Sofiah, S., Selvaratnam, L., Tai, C.C., Pingguan-Murphy, B., Kamarul, T.
    Malays Orthop J, 2009;3(2):16-23.
    Purpose:To investigate the feasibilty of using processed human amniotic membrane (HAM) to support the attachment and proliferation of chondrocytes in vitro which it turn can be utilised as a cell delivery vehicle in tissue engineering applications. Methods: Fresh HAM obtained from patients undergoing routine elective ceasarean sections was harvested., processed and dried using either freez drying (FD) or air drying (AD) methods prior to sterilisation by gamma irradiation. Isolated, processed and characterised rabbit autologous chondrolytes were seeded on processsed HAM and cultured for up to three weeks. Cell attachment and proliferation were examined qualitatively using inverted brightfield microcospy. Results: Processed HAM appeared to allow cell attachment when implanted with chrondocytes. Although cells seeded on AD and FD HAM did not appear to attach as strongly as those seeded on glycerol preserved intact human amniotic membrane, these cells to be proliferated in cell culture conditions. Conclusion: Prelimanary results show that processed HAM chondrocyte attachment and proliferation.
    Matched MeSH terms: Cell Culture Techniques
  20. Ngoh, Gek Cheng, Masitah Hasan, Kumoro, Andri Chahyo, Chew, Fui Ling, Tham, Margaret
    The production of ethanol, from glucose in batch and fed batch culture, was investigated. In the fed batch culture, the glucose feeding was added into the culture at 16th hour of fermentation. The effects of different glucose concentration feeding rates on ethanol fermentation were investigated for fed batch culture. The 2gL-1hr-1 glucose concentration feeding rate was found to give higher ethanol yield (2.47 g ethanol g glucose-1), with respect to substrate consumed as compared to 8 gL-1hr-1 (0.23 g ethanol g glucose-1) and 4 gL-1hr-1 (0.20 g ethanol g glucose-1). The ethanol yield with respect to substrate consumed obtained in batch culture was 0.81 g ethanol g glucose-1. The fed batch culture at 2 gL-1hr-1 glucose concentration feeding rate was proven to be a better fermentation system than the batch culture. The specific growth rate, specific glucose consumption rate and specific ethanol production rate for the fed batch fermentation, at 2 gL-1hr-1 glucose concentration feeding rate, were 0.065 hr-1, 1.20 hr-1 and 0.0009 hr-1, respectively.
    Matched MeSH terms: Batch Cell Culture Techniques
Contact Us

Please provide feedback to Administrator (tengcl@gmail.com)

External Links